
UNCLASSIFIED

AD NUMBER

ADB226867

NEW LIMITATION CHANGE

TO
Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies only; Specific Authority; 28 Jul
97. Other requests shall be referred to
RL/OCSM, 26 Electronic Parkway, Rome, NY
13441-4514.

AUTHORITY

AFRL/IFOIP ltr, 15 Jun 2004

THIS PAGE IS UNCLASSIFIED



RL-TR-97-5, Vol I (of two)
Final Technical Report
May 1997

MULTICHANNEL SYSTEM
IDENTIFICATION AND DETECTION USING
OUTPUT DATA TECHNIQUES

Scientific Studies Corp.

Jaime R. Roman and Dennis W. Davis

12 8 JUL 1997

DISTRIBUTION AUTHORIZED TO1 U.S GOVERNMENT AGENCIES ONLY; SPECIFIC
AUTHORITY: =7,41A0, "-,4A.-"Th OTHER REOUESTS FOR THIS
DOCUMENTSHALL BEREFERRED TO RL(OCSM), ROME, NY. /I y 44/, - 4 •"/

GOVERNMENT PURPOSE LICENSE RIGHTS (SBIR PROGRAM)
Contract No: F30602-93-C-0193

Contractor: Scientific Studies Corp.
For a period of four(4) years after delivery and acceptance of the last deliverable item under the above
contract, this technical data shall be subject to the restrictions contained in the definition of "Limited
Rights" in DFARS clause at 252.227-7013. After the four-year period, the data shall be subject to the
restrictions contained in the definition of "Government Purpose License Rights" in DFARS clause at
252.227-7013. The Government assumes no liability for unauthorized use or disclosure by others. This
legend, together with the indications of the portions of the data which are subject to such limitations, shall
be included on any reproduction hereof which contains any portions subject to such limitations and shall be
honored only as long as the data continues to meet the definition on Government purpo alicense rights.

19970722 093
Rome Laboratory

Air Force Materiel Command
Rome, New York



RL-TR-97-5, Vol I has been reviewed and is approved for publication.

APPROVED: '

JAMES H. MICHELS
Project Engineer

FOR THE COMMANDER:
DONALD W. HANSON, Director
Surveillance & Photonics Directorate

DESTRUCTION NOTICE - For classified documents, follow the procedures in DOD
5200.22M. Industrial Security Manual or DOD 5200.1-R, Information Security Program
Regulation. For unclassified limited documents, destroy by any method that will prevent
disclosure of contents or reconstruction of the document.

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please notify
Rome Laboratory/OCSM, 26 Electronic Pky, Rome, NY 13441-4514. This will assist us
in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704.0188

Public reporting burden for this collection of infonration is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of infonration, including suggestions for reducing this burden, to Washington Headquarters Services, Ditactorate for Information
operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

May 97 FINAL Ju193 - Oct 96
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

MULTICHANNEL SYSTEM IDENTIFICATION AND DETECTION USING C - F30602-93-C-0193
OUTPUT DATA TECHNIQUES, VOL I (OF TWO) PE - 65502F
6. AUTHOR(S) PR - 3005

TA - RC
Jaime R. Roman WU - 92
Dennis W. Davis
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

Scientific Studies Corp.
2250 Quail Ridge N/A
Palm Beach Gardens, FL 33418

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING

AGENCY REPORT NUMBER

Rome Laboratory/OCSM
26 Electronic Parkway RL-TR-97-5, Vol I
Rome NY 13441-4514

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: James H. Michels, OCSM, 315-330-4432

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

USGO Agencies Only; Specific Authority; .. D F..R S. 2 .5R 901J,4Alt Us T2 8 JUL 1997
Other Requests: RL/OCSM, 26 Electronic Parkway, Rome, NY 13441-4514.

13. ABSTRACT (Maximum 200 words)

The multichannel innovations-based detection algorithm (MIBDA) methodology formulated in Phase I was developed
in full and evaluated in the context of two applications: (a) airborne surveillance phased array radar systems, and
(b) computer-based electrocardiogram (ECG) diagnosis. A software simulation was developed to generate simulated
multichannel phased array radar data. This software was exercised to represent ground clutter as the output of a
state variable model (SVM), and to assess the performance of such models in the MIBDA. The MIBDA was modified
and extended to the automated diagnosis of ECG traces. MIBDA performance for ECG diagnosis was assessed using
the Common Standards for Quantitative Electrocardiography (CSE) database. Analysis and simulation results
indicate that the MIBDA offers a valid alternative to conventional systems in both of the applications considered. This
suggests also that the MIBDA can be configured to apply to a wide range of problem areas. Volume I presents the
MIBDA methodology, SVM identification algorithms, MIBDA design and performance evaluation issues, and
simulation results for both applications. Volume H presents the analytic and software model for airborne surveillance
phased array radar systems.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Multichannel Detection, Airborne Surveillance, State-Space Model, Innovations Processes, 238
System Identification, ECG Diagnostics 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRAC
OFREPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR
Standard Form 298 (Rev. 2-89) )EG)
Prascribed by ANSI Std. 23.18
Designed using Perform Pro, WHSIDIOR, Oct 94



TABLE OF CONTENTS

LIST OF FIGURES .................................................. v

LIST OF TABLES .................................................. ix

1.0 INTRODUCTION ................................................ 1

1.1 Notation ................................................ 6

1.2 Report Overview ......................................... 7

2.0 STATE SPACE MODEL-BASED MULTICHANNEL DETECTION .............. 9

2.1 Multichannel Detection ................................. 10

2.2 State Space Model ...................................... 14

2.3 Backward State Space Model .............................. 21

2.4 Stochastic Block Correlation Matrices ................... 23

2.5 Innovations Representation ............................. 25

3.0 MULTICHANNEL SYSTEM IDENTIFICATION ......................... 32

3.1 Output Data-Based Algorithm ............................ 32

3.2 Model Order Determination .............................. 47

4.0 INNOVATIONS SEQUENCE GENERATION ............................ 51

5.0 LIKELIHOOD RATIO DETECTION ................................. 57

6.0 AIRBORNE SURVEILLANCE PHASED ARRAY RADAR APPLICATION ....... 60

6.1 Conventional Space-Time Processing ..................... 62

6.2 Model-Based Space-Time Processing ...................... 66

6.3 Space-Time Process Modeling and Filtering Analyses ..... 67

7.0 ECG DIAGNOSTICS APPLICATION ................................ 86

7.1 Multichannel Electrocardiography ....................... 86

7.2 CSE Database ........................................... 93

i/li



7.3 Modeling and Discrimination Using CSE Data ............. 94

7.4 ECG Diagnosis Methodology ............................. 106

7.4.1 ECG trace pre-processing ........................... 109

7.4.2 ECG residual statistics and decision criteria ..... 112

7.4.3 ECG diagnosis methodology validation procedure .... 116

7.4.4 ECG diagnosis methodology validation results ...... 125

8.0 CONCLUSIONS AND RECOMMENDATIONS ........................... 134

APPENDIX A. PARTIAL QUOTIENT SINGULAR VALUE DECOMPOSITION ..... 138

A.1 Quotient Singular Value Decomposition .................. 139

A.2 Partial QSVD Algorithm ................................ 142

APPENDIX B. COMBINED SYSTEM MATRIX ESTIMATION FORMULA ......... 145

APPENDIX C. SPATIAL FILTERING AND THE LDU DECOMPOSITION ....... 149

APPENDIX D. HYPOTHESIS FILTER DESIGN .......................... 154

D.1 Zero-Mean Test ........................................ 156

D.2 Power Test ............................................ 160

D.3 Auto-Correlation Sequence Whiteness Test .............. 165

D.3.1 Circular ACS estimate for small values of N ....... 170

D.3.2 Circular ACS estimate for large values of N ....... 171

APPENDIX E. AUTO-CORRELATION SEQUENCE ESTIMATORS .............. 175

E.1 Circular ACS Estimator ................................ 175

E.2 Biased ACS Estimator .................................. 181

E.3 Unbiased ACS Estimator .................................. 183

APPENDIX F. RANDOM VARIABLE TRANSFORMATIONS .................... 186

F.1 Product of Two Independent, Gaussian-Distributed Random

Variables ............................................. 187

iii



F.2 Product of Two Independent, Special K-Distributed Random

Variables ............................................. 191

F.3 Difference of Two Independent, Special K-Distributed

Random Variables ...................................... 193

F.4 Sum of N Independent, Laplace-Distributed Random

Variables ............................................. 195

F.5 ACS Estimator Lags .................................... 197

APPENDIX G. MULTIPLE HYPOTHESES TESTING FOR ECG DIAGNOSIS ..... 201

REFERENCES ..................................................... 206

iv



LIST OF FIGURES

1-1 Radar array with J subarrays or individual elements ......... 3

2-1 Innovations-based multichannel detector with on-line

parameter identification ................................... 13

4-1 Two-function hypothesis filter ............................. 51

4-2 Whitening filter block diagram ............................. 52

6-1 Multichannel signal in a coherent surveillance radar array

system ..................................................... 61

6-2 Joint-domain configuration block diagram ................... 64

6-3 Space-time configuration block diagram ..................... 65

6-4 Time-space configuration block diagram ..................... 65

6-5 Multichannel model-based detection configuration with off-

line parameter identification for space-time processing .... 66

6-6 Logarithm of the normalized channel output power spectrum

(Blackman-Tukey spectrum estimate; true ACS case) .......... 75

6-7 Logarithm of the innovations representation model power

spectrum (true ACS case) ................................... 75

6-8 Canonical correlations of the channel output process (true

ACS case) .................................................. 76

6-9 Normalized mutual information for model order selection (true

ACS case) .................................................. 76

6-10 Map of the multivariable poles and zeros of the tenth-order

state-space model (true ACS case) .......................... 77

v



6-11 Top view of the logarithm of the innovations representation

model power spectrum (true ACS case) ....................... 77

6-12 Spatial-frequency axis projection of the logarithm of the

state-space model power spectrum (true ACS case) ........... 78

6-13 Doppler-frequency axis projection of the logarithm of the

state-space model power spectrum (true ACS case) ........... 78

6-14 Logarithm of the whitening filter power spectrum (true ACS

case ) ...................................................... 79

6-15 Top view of the logarithm of the whitening filter power

spectrum (true ACS case) ................................... 79

6-16 Spatial-frequency axis projection of the logarithm of the

whitening filter power spectrum (true ACS case) ............ 80

6-17 Doppler-frequency axis projection of the logarithm of the

whitening filter power spectrum (true ACS case) ............ 80

6-18 Logarithm of the channel output power spectrum (modified,

averaged periodogram; biased, time-averaged ACS case) ...... 81

6-19 Logarithm of the innovations representation model power

spectrum (biased, time-averaged ACS case) .................. 81

6-20 Canonical correlations of the channel output process (biased,

time-averaged ACS case) .................................... 82

6-21 Normalized mutual information for model order selection

(biased, time-averaged ACS case) ........................... 82

6-22 Map of the multivariable poles and zeros of the tenth-order

state-space model (biased, time-averaged ACS case) ......... 83

6-23 Logarithm of the residual process power spectrum

(periodogram; biased, time-averaged ACS case) .............. 83

vi



6-24 Real part of the normalized channel 0 true and model ACS

(biased, time-averaged ACS case) ........................... 84

6-25 Imaginary part of the normalized channel 0 true and model ACS

(biased, time-averaged ACS case) ........................... 84

6-26 Logarithm of the channel 4 residual power spectrum (averaged

periodogram; biased, time-averaged ACS case with 0 dB SNR

target) .................................................... 85

7-1 Cardiac conduction system of the human heart ............... 88

7-2 Base-to-apex lead placement configuration .................. 90

7-3 Single-cycle ECG trace for the base-to-apex lead placement

configuration .............................................. 90

7-4 Selected cardiac cycles of the ECG traces used in the

modeling and discrimination analysis ....................... 95

7-5 True and model spectra of the lead V5 normal ECG (single-

channel model) ............................................ 100

7-6 True and model spectra of the lead V5 abnormal ECG (single-

channel model) ............................................ 100

7-7 Covariance sequence of residual for normal whitening filter

applied to normal ECG signal (single-channel model) ....... 101

7-8 Covariance sequence of residual for normal whitening filter

applied to abnormal ECG signal (single-channel model) ..... 101

7-9 Covariance sequence of residual for abnormal whitening filter

applied to abnormal ECG signal (single-channel model) ..... 102

7-10 Covariance sequence of residual for abnormal whitening filter

applied to normal ECG signal (single-channel model) ....... 102

vii



7-11 True and model spectra of the lead V5 normal ECG

(multichannel model) ...................................... 103

7-12 True and model spectra of the lead V5 abnormal ECG

(multichannel model) ...................................... 103

7-13 Covariance sequence of residual for normal whitening filter

applied to normal ECG signal (multichannel model) ......... 104

7-14 Covariance sequence of residual for normal whitening filter

applied to abnormal ECG signal (multichannel model) ....... 104

7-15 Covariance sequence of residual for abnormal whitening filter

applied to abnormal ECG signal (multichannel model) ....... 105

7-16 Model-based, multi-lead ECG diagnosis architecture ........ 107

7-17 ECG trace pre-processing block diagram .................... 110

7-18 ECG two-level discrimination tree for the three-condition ECG

trace diagnostic architecture ............................. 119

7-19 Generic confusion matrix for a two-level, six-hypotheses

discrimination tree ....................................... 121

G-1 Multiple hypotheses test block diagram (minimum probability

of error criterion with equal prior probabilities) ........ 205

viii



LIST OF TABLES

3-1 QSVD matrix factors for the three factorizations ........... 42

6-1 Data vector and correlation matrix definition for the three

conventional space-time processing configurations .......... 62

6-2 Scenario, system, and simulation parameters for baseline

simulation analyses ........................................ 69

7-1 ECG trace pre-processing procedure for methodology validation

analyses ................................................... I1 i

7-2 ECG diagnosis methodology validation approach summary ..... 117

7-3 Conditions for simulation-based methodology validation .... 127

7-4 Statistical measures for the design set time- and ensemble-

averaged residual ACS ..................................... 132

7-5 Statistical measures for the design set time-averaged

residual ACS .............................................. 132

7-6 Statistical measures for the testing set time-averaged

residual ACS .............................................. 133

7-7 ECG diagnosis methodology evaluation confusion matrix ..... 133

F-1 Values of scaled SL PDF parameters N and L for cases of

interest .................................................. 200

ix



1.0 INTRODUCTION

In multichannel identification problems the outputs of

multiple channels (or sensors) are available, and it is desired to

identify the parameters of an analytical model to represent the

phenomena being observed via the channel outputs. Similarly, in

multichannel detection problems the outputs of multiple channels

are available, and it is desired to determine the presence (or

absence) of a desired signal component in the channel data. In

the combined problem of multichannel identification and detection

a model is estimated for the phenomena being observed via the

channel outputs, and the identified model is used to facilitate

the detection of a desired signal in the channel output data.

Multichannel identification and detection is thus referred to also

as model-based multichannel detection. In all of these problems

the channel data is available simultaneously over many channels of

the same type, or over many distinct channels (each channel

corresponding to a different sensor type).

This document is Volume I of a two-volume Final Technical

Report which summarizes the work carried out in Phase II of this

program. Specifically, this volume addresses the development of

state space algorithms and methodologies for model-based

multichannel detection in the context of airborne surveillance

phased array radar systems and electrocardiogram (ECG) diagnostics

applications. Volume II (Roman and Davis, 1996) presents an

analytic and software model for the multichannel output waveform

in an airborne surveillance phased array radar system. In such

systems the channels correspond to separate antenna apertures (or

elements of a single aperture array). The desired signal may or

may not be present in the channel output data at any given time.

The data in each channel generally includes jamming noise

(spatially-localized broadband interference), receiver noise, and

"clutter" (narrowband interference). In general, signal-to-
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clutter ratio (SCR) and signal-to-interference ratio (SIR) values

are low. And signal-to-noise ratio (SNR) values are often low

also. Model-based detection methods must discriminate between the

condition of target embedded in clutter and noise, and the

condition of clutter and noise only.

An ECG is a recording of electrical activity of the heart as

manifested on the surface of the body. A standard digital ECG

recorder detects this electrical activity at multiple discrete

locations on the body surface, and converts the sensed signals

into channels referred to as leads. The ECG thus provides

information about the condition of the heart for a large number of

abnormalities. In this application the objective is to

discriminate between normal and abnormal ECGs, and to classify the

abnormalities into the various detectable conditions.

In both of these applications the data is collected over time

at a discrete number of locations. Thus, both applications can be

categorized as space/time processing problems. Emphasis was

placed on surveillance radar array systems since that is the

application of main interest at Rome Laboratory (RL). The ECG

diagnostics problem is of interest to RL (and to the U. S. Air

Force) as demonstration of dual use for the technology developed

in this Small Business Innovation Research (SBIR) program.

Figure 1-1 presents a multichannel system block diagram for a

surveillance radar array consisting of multiple subarrays or array

elements. The output of each subarray (or each individual array

element) is a complex-valued, scalar, digital sequence, denoted as
{xi(n)}. The collection of the J scalar sequences is arranged into a

J-dimensional vector, {x(n)}, which is input to a processor (not

shown in the figure). A digital, multi-lead ECG recorder has an

analogous set of elements: a detector, a receiver, an analog-to-

digital converter, and a pre-processor. The ECG lead information
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is then fed to a processor also. For both applications, a

multichannel version of such a processor was the focus of Phase II

reported herein.

Channel No. 1
SAnalog A/D Pre- t• •n)

Receiver Converter Processor

Channel No. J
SAnalog A/D Pre- xj{•n)}

Receiver Converter Processor

Figure 1-1. Radar array with J subarrays or individual elements.

In Phase I the multivariate (multiple input, multiple output)

state space model class was adopted to represent the multichannel

radar data, and new system identification techniques were applied

to estimate the model parameters. Phase II continued the work

along the same lines based on the success obtained in Phase I.

The modeling of the complex-valued pre-processed radar signals for

multichannel detection using the state space model class is one of

the contributions of this work. State space models have been used

in the context of target tracking (where the detected radar signal

is processed further to estimate a trajectory) and for the

determination of weights in antenna array sidelobe canceling and

related problems, but not for multichannel detection. Model-based

detection has been carried out using the more-restricted time

series models (Michels, 1991; Metford and Haykin, 1985), which are

included within the class of state space models and can be

represented as such.
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The methodology developed in Phase I was based on the

recently-published algorithm developd by Van Overschee and De Moor

(1993), which has several unique features. Foremost among these,

the algorithm operates on output data directly to generate

estimates of the parameters of a state space model (without

computing output correlation matrices). This feature of the

algorithm results in reduced dynamic range requirements in

comparison with state space algorithms that operate on correlation

matrices. The algorithm belongs to the class referred to as

subspace methods because the fundamental operation of the

algorithm is to decompose the vector space spanned by the channel

output data into signal and noise subspaces. Implementation of

this fundamental operation is carried out using the QR

decomposition and the quotient singular value decomposition (QSVD)

for matrix pairs. The QSVD, in turn, is based on the singular

value decomposition (SVD). Efficient and stable software routines

are available for the QR decomposition and the SVD (Dongarra et

al., 1979).

Two other state space model identification algorithms were

considered also in Phase II. Namely, the canonical correlations

algorithm based on the work of Akaike (1974, 1975) and Desai et

al. (1984), and the unweighted principal components algorithm

proposed by Arun and Kung (1990). Both of these algorithms

estimate the state space model parameters using the output

correlation matrix sequence.

An important distinction in the context of radar system

applications is that the vector random processes which represent

the channel data are complex-valued processes in most cases. Most

time series techniques and models have been formulated for complex

as well as real processes. The same, however, cannot be said

about state-space techniques; state-space methods and results
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available in the literature have been defined almost exclusively

for the case of real-valued processes, including all three

algorithms considered in Phase II. The Van Overschee-De Moor

algorithm was extended to the case of complex-valued processes in

Phase I, and the canonical correlations algorithm was extended by

Scientific Studies Corporation (SSC) to handle complex-valued

processes in a program that ran in parallel with Phase I (Roman

and Davis, 1993b). Extending the Arun-Kung algorithm to handle

complex-valued processes was carried out in Phase II.

A new algorithm for implementation of the QSVD was developed

in Phase II. This algorithm simplifies the bookeeping associated

with the singular value pairs, and is more accurate and efficient

than the alternatives (Van Overschee and De Moor, 1993; Paige and

Saunders, 1981).

A hardware-based processor development system (PDS) was

configured and integrated to serve as a testbed for the design and

development of detection and identification methodologies and

algorithms. The PDS consists of a Sun Microsystems' SPARCstation

10 host and a SKY Computers' SKYstation II accelerator, with

FORTRAN 77 and MATLAB software (MATLAB runs only on the

SPARCstation).

Two software packages were generated as part of this program

to validate the methodology and the algorithms, and to carry out

simulation-based analyses. One software package is programmed in

FORTRAN 77, and the other is programmed in MATLAB. The FORTRAN-

based package is an implementation of the model-based multichannel

detection methodology using the Van Overschee-De Moor state space

model identification algorithm. This package is described in a

Software Users' Manual generated as a separate document (Davis and

Roman, 1996). The MATLAB-based package is an implementation of

the model-based multichannel detection methodology using each of
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the three state space model identification algorithms considered

in the program (Van Overschee-De Moor; canonical correlations;

Arun-Kung). Also included in the MATLAB-based software package is

the simulated data generation capability is described in Volume II

of this Final Report.

In summary, the analytical and simulation results obtained in

this program indicate that the SSC algorithm and methodology for

model-based multichannel detection has the potential to result in

significant advances for surveillance radar array systems and ECG

diagnostics applications.

1.1 Notation

Vector variables are denoted by underscored lower-case

Helvetica and Greek letters. Matrices are denoted by upper-case

Helvetica and Greek letters. Some scalars (such as the order of

the state variable model) are denoted also by upper-case letters.

Vector spaces are denoted by upper-case Zapf Chancery letters,
such as V. Mathematical and ancillary symbols are represented

with Helvetica letters in the most part, with a few exceptions

where Chicago and Times are used. The expectation operator is

denoted as E[-]; superscript T and H are used to denote the matrix

and vector transpose and the Hermitian transpose operators,

respectively; and an asterisk (*) denotes the complex conjugate

operator. IM denotes an M-dimensional identity matrix, ON,J

denotes an NxJ null (zero) matrix, OM denotes an M-dimensional

(square) null matrix, and OM denotes an M-dimensional zero vector.

IAI denotes the determinant of matrix A; A-' denotes the inverse of

matrix A; At denotes the pseudoinverse of A; range(A) denotes the

range (column space) of A; rank(A) denotes the rank of A; A(ij) and

ai are both used to denote the (ij)th element of matrix A; and dim(q/)

denotes the dimension of vector space V. A caret (^) over a

variable denotes an estimate of the variable, a bar (-) over a
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variable is used to represent the mean of the variable, and In(a)
denotes the natural logarithm of a. The symbol I denotes "is

orthogonal to;" n denotes intersection of two vector spaces; E

denotes the direct sum of vector spaces; x denotes the Kronecker

product; V denotes "for all;" and e denotes "is an element of."

Where possible, the symbols used herein to represent

variables match the symbols used by Michels (1991). This

simplifies the task of relating results and techniques presented

herein to prior and current work at RL. This philosophy forces

the use of non-standard symbols to represent the parameters of a

state variable model. Of course, notational convention should not

be a major issue provided all symbols are defined appropriately.

However, it is important to mention this point in order to avoid

possible confusion on the part of the reader.

1.2 Report Overview

An introduction to the model-based multichannel detection

problem is presented in Section 2.0. This section includes also

the definition of the state space model class and several related

concepts, including the backward model associated with a forward

model, and the innovations representation for a random process.

The Van Overschee-De Moor parameter identification algorithm is

presented in Section 3.0. As mentioned earlier, this algorithm is

the primary identification algorithm in the of the SSC model-based

multichannel detection methodology. Filtering of the channel data

to generate the innovations sequence is discussed in Section 4.0,

where it is shown that the methodology can be represented as the

cascade of a joint temporal/spatial linear filter and an

instantaneous linear transformation (a purely spatial filter).

The innovations sequence is fed to a likelihood ratio detector

which generates the detection decision, as described in Section

5.0. The surveillance radar array problem is presented in Section
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6.0, along with several simulation-based results. The ECG

diagnostics problem is defined in Section 7.0, including ECG trace

modeling and discrimination results. Section 8.0 includes the

main conclusions and recommendations borne out of this Phase II.

Appendix A presents the partial QSVD algorithm for matrix pairs

proposed by SSC. Appendix B presents the derivation of the

"combined F" formula referred to in Section 3.0. The relationship

between the LDU factorization and optimal linear filtering is

presented in Appendix C. A set of statistical tests for the

design of the hypothesis filters in the multichannel model-based

detection methodology is presented in Appendix D. And the three

most common auto-correlation matrix sequence estimators (unbiased;

biased; circular) are summarized in Appendix E, including their

key statistical properties. Several fundamental random variable

transformations are presented in Appendix F; these transformations

constitute the foundation for the statistical tests in Appendix D.

Finally, the formulation for testing multiple hypotheses is

summarized in Appendix G. This formulation is applied to ECG

diagnosis in Section 7.4.
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2.0 STATE SPACE MODEL-BASED MULTICHANNEL DETECTION

The model-based approach to multichannel detection involves

processing the channel data with a multiple-input, multiple-output

linear filter, and determination of a detection decision utilizing

the filter output. Filter parameters can be identified on-line,

as the channel data is received and processed. Alternatively, the

filter parameters can be identified off-line for various

conditions and stored in the processor memory to be accessed in

real-time as required.

There are two general classes of linear parametric models for

vector random processes: time series models and state space

models. Time series models include moving-average (MA) models,

auto-regressive (AR) models, and auto-regressive moving-average

(ARMA) models. State space models are more general than time

series models; in fact, MA, AR, and ARMA models can be represented

by state space models (Appendix E). In the state space

literature, the determination of the model parameters based on

output data (and, sometimes, input data also) is referred to as a

stochastic identification or a stochastic realization problem.

Time series models have been applied to the multichannel

detection problem, and the performance results obtained provide

encouragement for further research (see, for example, Michels,

1991, and the references therein). Michels (1991) adopted the AR

sub-class of vector time series models to represent the

multichannel output process. Given the generality of state-space

models and the wealth of results available in the state-space

literature, the state space model class was selected in this

program to represent the multichannel signals for radar systems

and other applications.
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In the case of time series models, two types of model

parameter estimation algorithms have been established in the

literature: (a) algorithms which operate on channel output

correlation matrices, such as the extended Levinson algorithm

(Anderson and Moore, 1979), and (b) algorithms which operate on

the channel output data directly (without the need to compute

channel output correlation matrices), such as the Levinson-

Wiggins-Robinson algorithm (Wiggins and Robinson, 1965) and the

Strand-Nuttall algorithm (Strand, 1977; Nuttall, 1976).

In the case of state-space models, most of the existing

algorithms operate on channel output correlation matrices, such as

the stochastic realization approach developed by Akaike (1974,

1975). This limitation is due, in a large part, to the fact that

the structure of state space models is more general than the

structure of time series models, and the increase in generality

has presented a significant challenge to the development of

algorithms that operate on channel output data directly.

Recently, however, Van Overschee and De Moor (1993) have defined a

state space stochastic realization algorithm which avoids the

computation of channel output correlation matrices. Furthermore,

this algorithm can be implemented using robust numerical

techniques. The Van Overschee-De Moor algorithm was adopted as

the baseline model identification algorithm in this program.

2.1 Multichannel Detection

Detection problems in the context of radar systems can be

postulated as hypothesis testing problems, where a choice has to

be made among two or more hypotheses. The radar target detection

problems addressed in this report involve the following two

hypotheses:

H0 : Target signal is absent

10



Hj: Target signal is present

H0 is referred to as the null hypothesis, and H0 is the alternative

hvpothesis. The model-based approach to the multichannel

detection problem is couched on the assumption that the vector

random process at the output of the channels can be represented as

the output of a white noise-driven linear system under each of the

two hypotheses, and that a unique parametric model corresponds to

each hypothesis. Each of the two parametric models (one for each

of the two hypotheses) has an inverse, or whiteninq filter, and

the two model inverse systems are used to process the multichannel

data. Furthermore, the output of the two whitening filters must

be sufficiently different to allow selection of the correct

hypothesis by the evaluation of measures that are sensitive to

those differences.

A particular measure that has produced robust experimental

results in the model-based detection context (Metford and Haykin,

1985) is the log-likelihood ratio (LLR) test. This test is the

result of solving the hypothesis testing problem using the Neyman-

Pearson criterion. The LLR test in the context of model-based

detection is calculated using the residual sequence at the output

of each of the two whitening filters, which presents practical and

implementation advantages. In such a configuration, the output of

the whitening filter that corresponds to the true hypothesis is

white noise, and such an output is reffered to as an innovations

seauence.

Figure 2-1 illustrates the architecture of an on-line

innovations-based multichannel detector of the type proposed by

Michels (1991), which is the multichannel extension of the single-

channel detector of Metford and Haykin (1985). In the case of a

radar array system, each of J radar receiver channels collects the
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electromagnetic energy arriving at its aperture, and processes it

to generate a discrete-time random sequence, denoted as {xi(n)},

which contains the desired information. The J random sequences

{xi(n)} are represented in vector form as {X(n)}. Michels (1991) has

formulated the binary detection problem for multichannel systems.
Specifically, the null hypothesis, H0 , corresponds to the case of

clutter and noise present in the observation process Lx(n)), and the

alternative hypothesis, H1 , corresponds to the case of signal,

clutter, and noise present in the observation process {x(n)}. That

is, the detection decision must be made between the following two

models,

(2-1a) Ho: x(n) =c(n) +i(n) +w(n) n > no

(2-1b) Hj: x(n) = s(n) + c(n) + i(n) + w(n) n Ž no

where no denotes the initial observation time, {c(n)} denotes the

clutter process, {i(n)} denotes all the broadband interference

processes, {w(n)} denotes all the array channel noise processes, and

{ý(n)} denotes the desired signal (target) process. In the model-

based approach pursued herein, a distinct state variable model is

associated with each of the two hypotheses, and a whitening filter

is designed for each model. Each filter processes the observation
sequence {x(n)} to generate a residual vector sequence: {y(nIHO)}

denotes the residual sequence at the output of the null hypothesis
filter, and {v(njH1 )} denotes the residual sequence at the output of

the alternative hypothesis filter. These residual sequences are

used in a likelihood ratio test with a pre-stored threshold to

carry out the detection decision. In the literature both residual

sequences are referred to as innovations sequences. This is an

abuse of notation because only the residual corresponding to the

true hypothesis is a true innovations in the sense defined in

Section 2.5. Notwithstanding, both terms are used interchangeably

in this report since such usage is widespread.
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Figure 2-1. Innovations-based multichannel detector with on-line
parameter identification.

As indicated in the detection configuration of Figure 2-1,

the two filters can be determined in real-time by processing the

observation sequence for a prescribed time interval. This

approach provides the most adaptability, but may present a large

computational burden for some applications. It also presents

conceptual challenges, such as real-time determination of model

order for each of the two filters. Alternatively, the filter

design can be carried out off-line for each of the two hypotheses,

and the resulting filter design implemented in the real-time

configuration. The off-line approach is less robust to changes in

the operational environment, but requires a simpler processor

architecture, which is important in many real-time applications.

Careful design of the filters off-line using adequate simulated

and real data can lead to acceptable performance. Also, many

pairs of fixed filters may be designed to cover distinct

operational conditions. In an off-line architecture, the "Model
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Parameter Identification" block in Figure 2-1 is replaced by a

"Pre-Stored Filter Selection" block. The filter for the

alternative hypothesis will be of higher order than the filter for

the null hypothesis because the observation process for the

alternative hypothesis has more information (namely, the signal

component).

Michels (1991) has developed a likelihood ratio calculation

and detection decision model which are compatible with the

formulation adopted herein. Both of these capabilities are

available at RL, and, where appropriate, the methodology presented

in this report is compatible with these capabilities.

2.2 State Space Model

The class of multiple-input, multiple-output state variable

models can represent effectively the channel output process for

radar systems and other applications. Consider a discrete-time,

stationary, complex-valued, zero-mean, Gaussian random process

{x(n)} defined as the output of the following state space model

representation for the system giving rise to the observed process:

(2-2a) y(n+l) = Fy(n) + Gu(n) n Ž no

(2-2b) x(n) = HHy(n) + DHw(n) n Ž no

(2-2c) E[y(no)] = 9N

(2-2d) E[y(no)yH(no)] = Po

Here n = no denotes the initial time (which can be adopted as 0

since the system is stationary). Also, y(n) is the N-dimensional

state of the system with y(no) a Gaussian random vector; U(n) is the

J-dimensional, zero-mean, stationary, Gaussian, white input noise
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process; and w(n) is the J-dimensional, zero-mean, stationary,

Gaussian, white measurement noise process. The output (or

measurement) process {x(n)} is also a J-dimensional vector process.

Matrix F is the NxN system matrix, G is NxJ input noise

distribution matrix, HH is the JxN output distribution matrix, DH

is the JxJ output noise distribution matrix, and Po is the

correlation matrix of the initial state. All these matrices are
time-invariant. Matrix Po is Hermitian (PoH = Po, and all its

eigenvalues are real-valued) and positive definite (all its

eigenvalues are positive).

System (2-2) is assumed to be asymptotically stable, which
means that all the eigenvalues of matrix F are inside the unit

circle. Also, system (2-2) is assumed to be reachable and
observable, which implies that the dimension N of the state vector

(also the order of the system) is minimal (Anderson and Moore,

1979). That is, there is no system of lesser order which has

identical input/output behaviour. Lastly, system (2-2) is assumed

to be minimum-phase (all its zeros are also inside the unit

circle). The output distribution matrices are defined with the

conjugate operator in order to have notation consistent with that
of the single-output system case, where both H and D become

vectors, and nominally vectors are defined as column vectors.

The input noise process correlation matrix is given as (all

matrices defined hereafter have appropriate dimensions)

(2-3a) E[u(k)UH(k)] = Ruu(O) = Q k Ž no

(2-3b) E[g(k)UH(k-n)] = Ruu(n) = [0] k Ž no and n •0

and the output noise process correlation matrix is given as

(2-4a) E[w_(k)wH(k)] = Rww(0) = C k Ž no
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(2-4b) E[w(k)AH(k-n)] = Rww(n) = [0] knOn and n•AO

Notice that matrices Q and C are Hermitian (that is, QH = Q, and

CH=C). Matrix Q is at least a positive semidefinite matrix since

it is an auto-correlation matrix (all the eigenvalues of a

positive semidefinite matrix are non-negative), and matrix C is

assumed to be positive definite (this can be relaxed to positive

semi-definite, but positive definiteness is more realistic since

in the radar problem w(n) represents channel noise and other such

noise processes which are independent from channel to channel).

In the most general form for this model the input and output

noise processes are correlated, with a cross-correlation matrix

defined as

(2-5a) E[(k)AH(k)] = Ruw(0) = S k Ž no

(2-5b) E[u(k)WH(k-n)] = Ruw(n) = [0] kn no and nrI0

In general, matrix S is not Hermitian. Both the input and output

noise processes are uncorrelated with the present and past values

of the state process, and this is expressed in terms of cross-

correlation matrices as

(2-6a) E[y(k)UH(k-n)] = Ryu(n) = [0] k :no and nŽ0

(2-6b) E[y(k)wH(k-n)] = Ry(n) = [0] k Ž no and n Ž 0

The correlation matrix of the state is defined as

(2-7) E[y(n)yH(n)] = Ryy(n) = P(n) k !no and nŽ0
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It follows from (2-2a) and the above definitions that the state

correlation matrix satisfies the following recurrence relation,

(2-8) P(n+l) = FP(n)FH + GQGH n t no

In general, matrix P(n) is Hermitian and positive definite. Since

system (2-2) is stationary and asymptotically stable, and since

matrix Q is positive definite, then the following steady-state

(large n) value exists for the recursion (2-8):

(2-9) P(n+1) = P(n) = P for n large

Under steady-state conditions Equation (2-8) becomes a Lyapunov

equation for the steady-state correlation matrix, P:

(2-10) P= FPFH+GQGH

The conditions for steady-state also insure that the solution to

Equation (2-10) exists, is unique (for the selected state space

basis), and is positive definite (Anderson and Moore, 1979).

Matrix P is unique for a given state space basis. However, if the

basis of the input noise and/or the basis of the state are changed

by a similarity and/or an input transformation, then a different

state correlation matrix results from Equation (2-10).

The correlation matrix sequence of the output process {X(n)} is

defined as

(2-11a) E[(k)XH(k-n)] = Rxx(n) = An Vk and nŽ!O

(2-11b) Rxx(-n) = RH (n) V n

For a system of the form (2-2), the correlation matrix Rxx(n) can be

factorized as follows,
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(2-12a) A, = Rxx(n) = HHFn'IF n > 0

(2-12b) An = Rxx(n) = FH[Fn'I]HH = ]H[FH]n'IH n < 0

where Fn-1 denotes F raised to the (n-1)th power, and F denotes the

following cross-correlation matrix

(2-13) F = E[y(n)xH(n-1)] = Ry(1) = FP(n)H + GSD V n > 0

The correlation matrix sequence factorization in Equation (2-12)

is the key to most correlation-based stochastic realization

algorithms. The zero-lag (n=0) output correlation matrix is

(2-14) Rxx(0) = HHP(n)H + DHCD = Ao

Matrix Rxx(0) is Hermitian and at least positive semidefinite. In

steady-state, P replaces P(n) in Equations (2-13) and (2-14).

As can be inferred from the above relations, the system
parameters {F,G,H,D, Q,C,S,P,F} completely define the second-order

statistics (the correlation matrix sequence {Rxx(n)}) of the output

process, and it is said that system (2-2) realizes the output

correlation matrix sequence. Conversely, the second-order

statistics of the output process provide sufficient information to

identify the system parameters, although not uniquely. Since the

output process has zero mean and is Gaussian-distributed, the

second-order statistics define the process completely.

From the system identification (stochastic realization) point

of view, the problem addressed herein can be stated as follows:

given the output data sequence {x(n)} of system (2-2), estimate a

set of system parameters {F, G, H, D, Q, C, S, P, F) which generates the

same output correlation matrix sequence as system (2-2).
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Furthermore, the identified parameter set must correspond to a

system realization of minimal order (with state vector y of minimal

dimension).

It is well known (Anderson and Moore, 1979) that there can be

an infinity of systems (2-2) with the same output correlation

matrix sequence. The set of all systems that have the same output

correlation matrix sequence is an equivalence class, and any two

systems belonging to the set are said to be correlation eauivalent

(Candy, 1976). For example, the output correlation matrix

sequence remains invariant to a similarity transformation applied

to the state vector. Similarly, the output correlation matrix

sequence remains invariant also to a non-singular transformation

applied to the input noise and/or to the output noise. As shown

by Candy (1976), the equivalence class of correlation equivalent

systems is defined including other operations besides a change of

basis.

Based on these comments, the solution to the system

identification problem is not unique. It is also true that most

of the possible system parameter solutions do not possess

desirable properties. There is, however, a solution which has

several features of importance. This solution is referred to as

the innovations representation for system (2-2), and is discussed

in Section 2.3. The identification algorithms discussed in this

report generate estimates of the system parameter matrices for the

innovations representation.

In general, the system matrix parameters resulting from the

identification algorithm will be represented in a different basis,

and should be denoted with a different symbol (say, F, instead of

F, etc.); nevertheless, the same symbol will be used in this

report in order to simplify notation.
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Several definitions and notation associated with the input

/output behaviour of system (2-2) are important. Consider first
the L-term (finite) controllability matrix of system (2-2), CL;

this matrix is defined as an NxJL partitioned matrix of the form

(2-15) CL = [G FG ... FL-'G I

For a minimal-order system, matrix CL has rank N (equal to the

system order) for LŽ!N. The controllability matrix maps the input

space onto the state space. Analogously, the L-term observability

matrix of system (2-2) is the following JLxN partitioned matrix,

HH

HH
(2-16) oL H F

H L-1-HFF

and or a minimal-order system, the rank of matrix 0 L is equal to N

for LŽ!N. The observability matrix maps the state space onto the

output space. Classical realization theory for the deterministic

case is based on the fact that a block Hankel matrix made up of

the impulse response matrices of a deterministic system can be

represented as the product of the observability and
controllability matrices. Let HL,L denote a JLxJL deterministic

Hankel matrix with the impulse response matrix A(i+j-1) as its (i,j)th

block element (a block Hankel matrix is a matrix in which the

(i,j)th block element is a function of i+j). That is,

A(1) A(2) ... A(L) 1

A(2) A(3) ... A(L+I)
(2-17) HL,L = OLC = .

A(L) A(L+I) ... A(2L-1)j
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Equation (2-17) follows from the definition of the impulse

response matrix sequence {A(n)} for a deterministic system,

(2-18) A(n) = HHFn'G n Ž 1

Matrices {A(n)} are referred also as the Markov parameters of the

deterministic system. It is well known (Kalman et al., 1969) that
for LŽ!N the rank of the block Hankel matrix HLL is equal to the

system order, N. In fact, it is true also that rank(HN+kN+k)=N

for k> 1, and that the elements of the impulse response matrix

sequence {A(n)} satisfy a set of recursion relations of order equal

to the minimal polynomial of matrix F. The block columns (and

block rows) of HL,L satisfy the same recursion relations due to the

sequential arrangement of the impulse response matrices as block
elements of HL,L-

Notice that the representation (2-18) of the impulse response

matrix sequence is of the same form as the representation of the

correlation matrix sequence in Equation (2-12). Thus, the matrix
elements of the correlation matrix sequence {An) satisfy the same

set of recursion relations as the matrix elements of the impulse
response matrix sequence {A(n)), and the above-discussed properties

of the deterministic Hankel matrix are also properties of the
stochastic Hankel matrix defined using {An} (see Equation (2-22)

below).

2.3 Backward State Space Model

Associated with system (2-2) is a backward time model which

is defined from the system model (2-2). Backward time models play

a role in the formulation of a large class of stochastic

realization algorithms. The backward time model for system (2-2)

is defined as a discrete-time, stationary, complex-valued, zero-
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mean, Gaussian random process with a state space representation of

the form (Faurre, 1976)

(2-19a) s(n) = FHs(n+1) + vi(n)

(2-19b) x(n) = IFHs(n) + Vo(n)

where s(n) is the N-dimensional state vector, Vi(n) is the N-

dimensional input noise vector, and vo(n) is the J-dimensional

output noise vector. Both noise vectors are uncorrelated in time

(white), have mean equal to zero, and are Gaussian-distributed.
The backward model output distribution matrix, F, is the same

matrix which appears in the factorization of the output

correlation matrices in Equation (2-12), and is defined in

Equation (2-13).

The L-term observability matrix for the backward system (2-

19) is the following JLxN partitioned matrix,

(2-20) DL = FH

L jFH)L-l_

The backward system is completely observable also, which implies
that rank(DL_)= N. Also of interest is the Hermitian of DL with the

block columns in reversed order. That is,

(2-21) B =DL = [FLir ... F F]

where the dual-point arrow over matrix TV indicates reversal in

the order of the block columns. Notice that matrix B is like a
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controllability matrix for the matrix pair (F,F) in reverse block

column order. Thus, matrix BL is referred to herein as the L-term

reversed dual controllability matrix.

2.4 Stochastic Block Correlation Matrices

In the context of stochastic realization theory, the

significance of the backward model follows from Equation (2-20)
and the Hankel matrix of output correlation matrices, as shown
next. Define a stochastic Hankel matrix HL,L as the following

JLxJL block matrix,

Al A2 ... AL

(2-22) H-!L,L = A2  A 3  ... AL+I

AL AL+1 "" A2 L.1

where the block elements {Ai} are the elements of the output

correlation matrix sequence, Equation (2-12). It follows from

Equations (2-12), (2-16), and (2-22) that

(2-23) HLL =OLI

This equation is fundamental to stochastic realization algorithms,
and allows the application of classical deterministic realization
algorithms to the stochastic realization problem formulated with

output correlation matrices. It also provides insight into the

stochastic realization algorithm presented in Section 3.0, even
though the algorithm does not require computation of the output

correlation matrix sequence.

Other important matrices in stochastic realization theory
include the JLxJL "future" and "past" block correlation matrices.
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These matrices are the correlation matrices of future and past

output block vectors defined as

X(n)

(2-24) Xp = x(n;n+L-1) = (n+1)

x(n+L-1)

x(n+L)

(2-25) XF = x(n+L;n+2L-1) = (n+L+l)

x(n+2L-1)

With respect to the time instant n+L, vector Xp represents the

past of the process {X(n)}, and vector xF represents the future of

the process {x(n)}. Given these definitions, the future and past

block correlation matrices are given by the following JLxJL

matrices:

Ao A 1 ... AlL

(2-26) 4P:L,L = E[X = A1  A0 ... A2"L

AL.1 AL.2"'" Ao

Ao A1 ... AL.1

(2-27) VF:L,L = E[XFxFl = A' AL'2

AlL A2.L"" A0

where *F:L,L and -P:L,L are the future and past block correlation

matrices, respectively. Both of these matrices are Hermitian as
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well as block Hermitian, and they exhibit a block Toeplitz

structure (a block Toeplitz matrix is a matrix in which the

(i,j)th block element is a function of i-j).

Another matrix of interest is the block cross-correlation

matrix between the future and the past, which is defined as

(2-8) - AL1 ALi ... A2

(2-2 8) F:L,P:L = E[Fxl = ALA . = "-,L B0 L7

A2L-I A2L-2  AL

Notice that the block cross-correlation matrix *:L,P:L is equal to

the stochastic block Hankel matrix with the block columns in

reverse order, as indicated in Equation (2-28).

Equations (2-26)-(2-28) are valid for all n because the

process {x(n)} is stationary. Also, for LŽN, equations (2-26)-(2-

28) define the correlation structure of system (2-2). In fact,

the stochastic realization algorithm of Akaike (1974, 1975) is

based on these block correlation matrices.

2.5 Innovations Representation

The innovations representation is a very powerful concept in
the theory of linear stochastic systems due to its simplicity and

its characteristics. Several texts and papers discuss this

concept in detail. The discussion herein is adapted mostly from

Anderson and Moore (1979), which provide a lucid presentation.

The innovations representation for a system (2-2) is a

discrete-time, stationary, complex-valued, system of the form
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(2-29a) g(n+1) = Foa(n) + Kf,(n) n _ no

(2-29b) X(n) = HHo(n) + .(n) n _ no

(2-29c) (no)= ON

(2-29d) E[oa(no)2H(no)] = 1-(no) = 110 = [0]

(2-29e) E[x(n)_H(n)] = r[(n) n > no

(2-29f) I-(n) = r- as n--oo

(2-29g) Rxx(n) = Rxx(n) Vn

here _c(n) is the N-dimensional state, X(n) is the J-dimensional

output, and the input process {F_(n)} is the innovations process for

system (2-2). That is, {_•(n)} is a J-dimensional, zero-mean, white

Gaussian process with correlation matrix structure given as

(2-30a) 2 = E[k(k)_H(k)] = Rxx(0) - HH11H = Ao - HH HH k > no

(2- 30b) E[_(k)_H(k-n)] = [0] k >no and n•0

The state correlation matrix 11(n) has a steady-state value because

the system is asymptotically stable (stationary), and the steady-
state value, H1, is obtained as the limiting solution to the

following recursion

(2-31a) 1I(n+l) = FI-(n)FH + [FI-(n)H - F] [Ao - HHrI(n)H]-l [F-I(n)H - -]H n > no

(2-31b) 11(no) = Ho = [0]

Matrix K in Equation (2-29a) is given as
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(2-32a) K = [F- FHH] C-1 = [F- FHH] [Ao - HHHHI1

(2-32b) K = GSDK 1 = GSD [Ao- HH1H]1

where the second relation follows from the definitions of F in

Equation (2-13) and of Q in Equation (2-30a). In the cases where

the inverse of the correlation matrix L does not exist, its

pseudoinverse is used instead in Equations (2-31) and (2-32).

Matrices F, H, A0 , and F are as defined for system (2-2).

That is, system (2-29) is related to system (2-2) . In fact,

system (2-29) as defined above is the steady-state innovations

representation for system (2-2). This representation has the

following important features.

(a) First and foremost, the correlation matrix sequence of

{z(n)} is equal to the correlation matrix sequence of

{x(n)}, as indicated in Equation (2-29g). That is, the

processes {X(n)} and {x(n)} are correlation equivalent.

This means that the innovations representation is a

valid solution to the system identification problem

defined herein.

(b) Of all the correlation equivalent representations for

a given output correlation sequence, the innovations

representation has the smallest state correlation
matrix, H (smallest is meant in the sense of positive

definiteness; that is, rI is smaller than r2 if 12 -

ni is a positive definite matrix). This property of

the innovations model is significant because the state

correlation matrix is a measure of the uncertainty in

the state.
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(c) The innovations representation is directly related to

the steady-state Kalman filter (in the one-step

predictor formulation) for system (2-2). In fact, the

steady-state Kalman filter for system (2-2) is

available immediately upon definition of the steady-

state innovations representation, and viceversa.

Specifically, matrix K of Equations (2-29a) and (2-

31) is the steady-state Kalman gain of the optimal

one-step predictor for system (2-2). This is true

provided that the eigenvalues of F-KHH are stable.

Thus, the innovations model is defined as above for

all processes of the form (2-2), but the steady-state

Kalman filter is defined only if F-KHH is stable.

(d) The process {K(n)} in Equations (2-29) and (2-30) is

correlation equivalent to the innovations sequence of

system (2-2), which is the reason for referring to

system (2-29) as the "innovations representation" for

system (2-2).

(e) The innovations model (2-29) is causally invertible.

This means that the present and past of the process

{E(n)} can be constructed from the present and past

values of the output process {y(n)). The converse

statement is true also; that is, any causally

invertible model is an innovations representation for

some system. Causal invertibility of system (2-29)

can be demonstrated easily. From Equation (2-29b),

(2-33) E(n) = HHC(n) + y(n)

Substituting this expression for E(n) into Equation (2-

29a) results in
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(2-34) &(n+1) = [F - KHH]q(n) + KX(n)

These relations demonstrate the causal invertibility

of the innovations model (the input and output

variables have traded places). Causal invertibility

also provides a whitening filter for the process

{x(n)}. In fact, the whitening filter for {x(n)} is

given by Equations (2-33) and (2-34) with X(n) in place

of X(n), and initial condition as in Equation (2-29c).

(f) Matrix F- KHH in the inverted innovations model is a

stable matrix. This follows from the fact that the

matrix pair (F,H) is observable, and implies that the

Kalman filter for system (2-2) is stable also.

(g) The transfer function of the innovations model (2-29)

is minimum phase. This is related to the fact that

the innovations model is correlation equivalent to

system (2-2), and second-order moment information (the

output correlation matrix sequence) does not contain

any phase information.

(h) The innovations representation for a system of the

form (2-2) is unique. Given that the innovations

representation has the same output covariance sequence

as system (2-2), the fact that it is unique eliminates

searching for other representations for system (2-2)

with the properties listed herein.

(i) The innovations model (2-29) can be computed from the

output correlation matrix sequence of system (2-2).

This fact simplifies the parameter identification

problem because the set of matrix parameters that must

be estimated from the data is reduced to just five:
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(F, H, F, H, A01 (given these parameter matrices, the

innovations covariance, Q, and the Kalman gain, K,

are obtained using Equations (2-30a) and (2-32a),

respectively).

All the features listed above are of relevance to the

identification approach presented in Section 3.0 because the

selected parameter identification algorithm generates the

innovations representation for the given output correlation matrix

sequence, following feature (i).

The backward model has an associated backward innovations
model which is defined by F, F, and the backward Kalman gain.

Most of the features (a)-(i) that describe the forward innovations

model are valid also for the backward innovations model, with a

notable exception of feature (b), which needs to be replaced by

the following statement: For each valid correlation equivalent

representation for a given output correlation sequence, the state

correlation matrix is smaller than the inverse of the state

correlation matrix for the backward innovations model. More
specifically, let Ub denote the state correlation matrix for the

backward innovations model in steady-state conditions, and let I

denote the state correlation matrix for any valid correlation

equivalent representation of an output correlation sequence.

b 1 _ I is a positive definite matrix. This result provides

an upper bound for the state correlation matrix of a correlation

equivalent representation. Combining this with the lower bound of

property (b) of the forward innovations model gives

(2-35) rib• 1

As before, the inequality between two matrices is intended in the

sense of positive semi-definiteness of the matrix difference.
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Of particular interest is the system representation for which

the forward and backward state correlation matrices are both

diagonal and equal to each other. Such a system is said to be in

balanced coordinates in the stochastic sense (Desai et al., 1985).

Notice that all the diagonal elements of the state correlation

matrix must be less than unity in a balanced coordinates

representation in order for Equation *(2-35) to be satisfied.

Balanced coordinates allow effective model order selection and/or

model order reduction (Moore, 1981).
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3.0 MULTICHANNEL SYSTEM IDENTIFICATION

The innovations representation is adopted to model the

channel output process, since it reduces the model identification

problem to a set of five parameter matrices, {F,H,F,f, Ao} (recall

that given these parameter matrices, the innovations covariance,
C, and the Kalman gain, K, are obtained using Equations (2-30a)

and (2-32a)). Identification of the innovations representation

parameter matrices is carried out using the algorithm of Van

Overschee and De Moor (1993), extended to the case of complex-

valued data. The Van Overschee-De Moor algorithm is based on the

predictor space concept of Akaike (1974; 1975), the correlation

equivalence results obtained by Faurre (1976), and the balanced

stochastic realization approach of Arun and Kung (1990). The Van

Overschee-De Moor algorithm is discussed in detail in the Final

Report for Phase I (Roman and Davis, 1993a), and is summarized

herein for convenience. The algorithm is based on the

decomposition of the process future into two orthogonal subspaces,

wherein one subspace is spanned by the process past and the second

subspace is spanned by a white noise process. Two other system

model identification algorithms, canonical correlations (Desai et

al., 1985) and unweighted principal components (Arun and Kung,

1990), were considered in Phase II.

3.1 Output Data-Based Algorithm

In comparison with alternative stochastic realization

techniques, the Van Overschee-De Moor algorithm adopted herein has

several advantages for multichannel detection applications, as

listed next.

Reduced dynamic range with respect to algorithms which

require generation of the output correlation matrix

sequence (correlation matrices are estimated as sums of
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products of the data sequence elements, which increases

the dynamic range). As such, the algorithm can be

viewed as a "square-root" algorithm.

"* Identifies the parameters for a model in the state-space

class, which is more general than the time series class.

" Belongs to a class of algorithms referred to as

"subspace methods." Subspace methods involve the
decomposition of the space spanned by the output process

into two orthogonal subspaces: one subspace is the space

spanned by the "desired component," and the other

subspace is spanned by the "noise component." The MUSIC

algorithm (Schmidt, 1979; 1981), for example, also

belongs to the class of subspace methods.

" An approximately balanced (in the stochastic sense)

state space realization is generated, thus providing a

built-in and robust mechanism for model order selection.

" Identifies the innovations representation of the system,

and generates the Kalman gain directly, without having

to solve a nonlinear discrete matrix Riccati equation.

"* Approach differs from others in that the states of a

Kalman filter for the given sequence are identified

first, and then the model parameters are estimated via

least-squares.

" Implementation of the algorithm involves the QR

decomposition and the quotient SVD (QSVD), also known as

the generalized SVD, which are stable numerical methods.

Furthermore, the QSVD is applied to matrices of small

dimensions.
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An algorithm for implementing the QSVD as required by the Van

Overschee-De Moor algorithm is presented in Appendix A. The

algorithm is referred to as a partial QSVD because for certain

conditions one or more columns of one of the matrices in the QSVD

factorization are not generated. This is not a severe restriction

because such conditions do not arise in many cases, including the

Van Overschee-De Moor identification algorithm. Furthermore, the

missing columns can be calculated if required (as the null space

of a matrix). The partial QSVD is less complex and more accurate

(from a numerical point of view) than the QSVD presented by Van

Overschee and De Moor (1993).

Van Overschee-De Moor Algorithm. Consider the channel output

sequence {X(n)}. For simplicity, let the initial time no= 0. This

can be done without loss of generality because the system is
stationary. Now define a block Hankel matrix XOL.- with output

sequence vectors assigned as block elements according to the rule
XoLl(i,j) = (i+j-2); that is,

x(0) x(1) x(2) ... x(M-1)

x(1) x(2) x(3) ... X(M)

(3-1) XOL.1= x(2) x(3) x(4) ... x(M+1)

x(L-1) x(L) x(L+1) ... x(L+M-2)

Here the first subscript denotes the time index of the first

element of the first row, and the second subscript denotes the
time index of the first element of the last row. Matrix XO.L.I has

JL rows and M columns (recall that J is the number of channels).

The block row dimension, L, must be selected so that J(L-1) Ž N
(recall that N is the system order), and the column dimension, M,
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must be selected so that M >>L. A more practical constraint for M

is M > 2JL. In a similar manner define another JLxM block Hankel
matrix XL,2L.1 with output sequence vectors assigned as block

elements according to the rule XL,2LI(i,j)=x(i+j-2+L); that is,

x(L) x(L+l) x(L+2) ... x(L+M-1)

x(L+l) x(L+2) x(L+3) ... x(L+M)

(3-2) XL,2L.1= x(L+2) x(L+3) x(L+4) ... x(L+M+I)

_x(2L-1) x(2L) x(2L+I) ... x(2L+M-2)

Matrices XOL..I and XL,2L.1 represent the "past" and the "future",

respectively, of the output process. Akaike (1974; 1975) has

demonstrated that since the order of the state space model is N,

the projection of the future onto the past is an N-dimensional
subspace of the M-dimensional space to which the rows of XL,2L.1

belong. Let this subspace be called the process space, and let

its complement be called the noise space. The structure of the

process space (and of its matrix representation) determines the

characteristics of the state space model (such as model order).

The Van Overschee-De Moor algorithm is based on determining the

decomposition of the future space into the two orthogonal

subspaces, process space and noise space. This decomposition can

be carried out using the computationally efficient and numerically

robust QR decomposition (Dongarra et al., 1979).

Consider now the block Hankel data matrix XO, 2 L.I, which is a

2JLxM block column matrix made up of a concatenation of the past

and future Hankel matrices,
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X0,L-1

(3-3) XO,2 L.1 -

XL,2L-1

Now apply the Hermitian operator to a "normalized" form of matrix
XO, 2 L.., and carry out a QR decomposition on this matrix to obtain

H [ RH

(3-4a) X0'2L'I 1 [ H X H Q --- ----Fjj X0,L-1 L ,2L -.1

(3- H- 1 L LXHH - Q O(M-2JL),2JL

H RH
RA RB

H

(3-4b) -=[ QA QB QC [0] H

[0] [0]

The normalization factor ViM is required to avoid increase in

dynamic range and to match the formulation of the problem based on

the correlation matrix sequence. Matrix Q is an MxM unitary
matrix, submatrices OA and QB are dimensioned MxJL, and submatrix

QC is dimensioned Mx(M-2JL). Matrix RH in Equation (3-9a) is a

2JLx2JL upper-triangular matrix with rank equal to the rank of
matrix XO, 2L..l All the submatrices of R are dimensioned JLxJL, and

H Hsubmatrices RA and R0 are also upper-triangular. Since matrix Q

is unitary, the following relations are true:

(3-5) QQH = H H
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HH-A Q QAB QHQo
1JL [0] [0] 1

(3-6) QHQ = QH A QQB QQC = [0] IJL [0] =IM

H H [0] [0] IM-2JL
- QA QCQB QOQc

Consider now the conjugate transpose of Equation (3-4), after
eliminating QC since it is multiplied by zeros; that is,

(3-7) X0, 2 L.1 _ X0,L[ 1 RA -[0]-- Q%

SL,2L-1 RB Rac L Q H

The following two equations are obtained immediately from the

partitioning in Equation (3-7),

(3-8) 'L =RAQ

XL,2L-1 RH+RQH
(3-9) A RBQA + R1Q3

Equation (3-8) is a QR decomposition of XO,L.I (recall that RA is

lower triangular), and Equation (3-9) is a subspace decomposition
of XL,2L..1 In fact, (3-9) is the desired subspace decomposition of

XL,2L.1 (Roman and Davis, 1993a). The information of the projection

of the future onto the past is contained in matrix RB.

Specifically, the rank of RB is equal to the order of the state

space model representation for the future-to-past interface, and
the column space of RB is equal to the column space of the

observability matrix for the state space model (Van Overschee and

De Moor, 1993).
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Consider Equation (3-7) and carry out a further partitioning

of the QR decomposition matrices as follows:

Rl1 [0] [0] [0] QH

R~ Q H

(3-10a )= 1 X .,L .. = R21 R 22 [0] [0] 2

AM- f0aXL,2L-1 R31 R32 R33 [0] QH

R41 R42 R43 R44 QH

J(L-1) J J J(L-1)
J(L-1) R1 l [0] [01 [0]

(3-10b) J R21 R22 [0] [0]

J R3 1 R32 R33 [0]

J(L-1) R4 1 R42 R43 R44

M

J(L-1) eH
01

j eH

J(3-10c) - -- -

J Q3I

J(L-1) QH

From Equations (3-7) and (3-10) it follows that the JLxJL matrices
RA, RB, and RC are defined with the following partitions:

(3-11) RA R11 [0] 1
( R2 1 R22

(3-12) RBE R3 1 R32 1
R4 1 R42
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_ R 3 [0] 1
(3-13) Rc R3 [0 ]

R43 R44

Refer to the partitioning in Equation (3-10) and define four other

partitioned matrices as

(3-14) RD = [ R 4 1 R 42 R43 RD: J(L-1)xJ(h+l)

(3-15) RE = R44 RE: J(L-1)xJ(L-1)

[R211

(3-16) RF = R3 1  RF: J(L+I)xJ(L-1)

R4 1

R22 [0] [0]

(3-17) RG = R 3 2 R33 [0] RG: J(L+I)xJ(L+I)

R42 R43 R44

Now carry out three QSVDs on these matrix pairs as described next.
The first QSVD is applied to the matrix pair (RB,RC) to obtain

(3-18) RH = ULSLYH

(3-19) RH LH

The second QSVD is applied to the matrix pair (RDRE) to obtain

H H(3-20) RD = UL.1SL.1YLH1

H H(3-21) RE = VL.1TL.1YL.1

And the third QSVD is applied to the matrix pair (RFRG) to obtain
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(3-22) R = UL, SL, YL H

H YH
(3-23) R� VL+1TL+1YL+I

In these three QSVDs the subscripts (L-1, L, or L+1) correspond to

the term index of an associated observability matrix defined as in

Equation (2-16). The dimensions and key properties of the fifteen

matrix factors in the three QSVDs are listed in Table 3-1 (see

Appendix A for further details on the QSVD).

In Table 3-1 and elsewhere in this report, a rectangular

matrix is said to be diagonal if it has non-zero elements only

along its main diagonal, in agreement with common usage. As

stated in Appendix A, the diagonal elements of each matrix pair
(S(.),T(.)) are referred to as singular value pairs of the

corresponding matrix pair (R(.),R(.)) . Furthermore, for each zero-

valued diagonal element in S(.) there is a corresponding unity-

valued diagonal element in T(.).

The value of the diagonal elements of matrices SL.1, SL, and

SL+1 is indicative of model order. In fact, when the data is the

output of a system of order N, only the first N diagonal entries

are non-zero in each of the three matrices SL.I, SL, and SL+1. This

is the reason for the constraint J(L-1) Ž N (since the minimum

dimension of all three matrices is J(L-1)). Thus, for an N-th order

model the matrix pairs (S(.),T(.)) have a natural partition along the

main diagonal corresponding to the first N entries. Specifically,

s(1) [0] 1 0 1
L-1 L-1-[

(3)= [2 [0] OjL.J.N(3-24) SL.I [0] -L-1 = 0 J--j 01 [0] 0 0
[0] [0] [0] [0]4
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[ L+) [0oL] [0] 1
(3-25) SL [0I] S (2)1 =

( 6I [01  [0] ( L-J-N [0]

(3-27) TL.1 = [0 1 [-L [0]-

[o] 1 = 1011 o JL-J.N

T[ 1)[0]] [Tl) [0] 1
(3-28) TL=- [0] .L1 = [0] IJLN

TL' [0] I(2 ) [0] ]
0 TL+1JL+J-N

In practical situations where only a limited amount of noisy data

is available, the cut-off between non-zero and zero-valued
diagonal elements of the S(.) matrices dissappears. This is further

complicated by the finite numerical precision in the processor

used to implement the algorithm.

The approach selected herein to estimate model order is to
examine the diagonal elements of matrix SL only. Besides being

simple to implement, this approach is theoretically sound because

the correlation matrix of the innovations model state in balanced
coordinates is equal to matrix SL; that is, r 1=[Ib=SL* Also, the

diagonal elements of rI are the canonical correlations (Desai et

al., 1985; Roman and Davis, 1993b). Model order determination is

discussed further in Section 3.2.
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MATRIX DIMENSIONS PROPERTIES

UL.1 J(L+I)xJ(L+1) Unitary

Rectangular; diagonal; real-valued; with diagonal

SL-1 J(L+I)xJ(L-1) elements bound by unity and zero, and arranged
in order of decreasing magnitude

YL-1 J(L-1)xJ(L-1) Square; non-singular

VL.1 J(L-1)xJ(L-1) Unitary

Square; diagonal; real-valued; with diagonal
TL.1 J(L-1)xJ(L-1) elements bound by unity and zero, and arranged

in order of increasing magnitude

UL JLxJL Unitary

Square; diagonal; real-valued; with diagonal
SL JLxJL elements bound by unity and zero, and arranged

in order of decreasing magnitude

YL JLxJL Square; non-singular

VL JLxJL Unitary

Square; diagonal; real-valued; with diagonal
TL JLxJL elements bound by unity and zero, and arranged

in order of increasing magnitude

UL+1 J(L-1)xJ(L-1) Unitary

Rectangular; diagonal; real-valued; with diagonal
SL+1 J(L-1)xJ(L+I) elements bound by unity and zero, and arranged

in order of decreasing magnitude

YL+1 J(L+I )xJ(L+l) Square; non-singular

VL+1 J(L+I)xJ(L+1) Unitary

Square; diagonal; real-valued; with diagonal
TL+l J(L+I)xJ(L+I) elements bound by unity and zero, and arranged

in order of increasing magnitude

Table 3-1. QSVD matrix factors for the three factorizations.
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Now define block column partitions in matrices U(.), V(.), and

Y(.) to correspond with the partitions in Equations (3-28)-(3-31).

This results in

(3-30) U 1= Eu~i (1) - [(2) U = u (1 U(2 UL+l = [uO 1  u (2)

(3-31) VLl1 = IV~ ()v () VL = IV~ ()v (2) VL+l IV ('1) V(2)

(3-32) YL-1 = Y() Y (2)L = [Y() Y(2) L+1= - (1) y(2)]

In Equations (3-24)-(3-32), all submatrices with superscript (1)

have N columns; these submatrices are used to compute the model

matrix parameters.

Matrix F can be estimated using any one of three formulas.

The first formula is obtained by solving a least-squares problem

formulated using the state propagation equation of the forward

innovations representation; thus, the resulting estimate is

referred to herein as the "forward F" and is denoted with

subscript f,

(3-33) Ff = (S•y112 (( )y(1) S (1 (u(j H () S 1)Y1/ 2

L L -L-1 •L-1 L- 1 L-

where the dagger (t) denotes the pseudo-inverse operator, the
(1) ()underbar denotes that matrix Y-L is obtained from matrix Y L by

deleting the last block row (J single rows), and analogously for

matrix UL-1 The second formula is obtained by solving a least-

squares problem formulated using the state propagation equation of

the backward innovations representation, and thus is referred to

herein as the "backward F" and is denoted with subscript b,

43



U (1) S(1
L+1 L+1

(3-34) Fb (S ())"'12 (S1) OU 'HT > (V(1))H] (Z 1,)t (1) (S ())1/2b~~~ ~ L~ 1 IS 1 1UT1 Y~)Y
L VM T(1) 1
L+1

The third formula is obtained by solving a least-squares problem

formulated using a combination of the state propagation equations

of both innovations representations (forward and backward), and
turns out to be a weighted linear combination of Ff and Fb. The

resulting system matrix estimate is referred to herein as the

"combined F" and is denoted without subscript C. Specifically,

(3-35a) Fc fjc

s_ f ijf+sfb
(3-35b) f = i fif+Sfj

where Si denotes the ith diagonal element of S), and fI, fijf, and f

denote the (i,j)th elements of Fc, Ff, and Fb, respectively. Notice
from Equation (3-35b) that if f1jf~fijb' then fjc=fif=fib; also, if Si=I

then f.c is the average of fijf and fijb" Both of these observations

agree with intuition. For a short-duration data sequence (small

value of M), the combined F formula should provide an improved

estimate. For a long-duration data sequence the forward and

backward estimates should be approximately equal, and either

estimate suffices. However, the forward F calculation is

preferred because it is simpler and it does not involve V() and TO)
(a) M.

matrices. Appendix B presents the derivation of the combined F,

which is a new result obtained in Phase II.

The output distribution matrix, H, can be estimated using

either one of two formulas. The first formula is obtained by

solving a least-squares problem formulated using the output

equation for the forward innovations representation. Thus, this
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formula is referred to herein as the "forward H" and is denoted

with subscript f,

(3-36) H= [ R31 R (S /2

The second expression for estimating the output distribution

matrix is based on the fact that HH occupies the first J rows of

the observability matrix, O(.). Consequently, this estimate is

referred to herein as the "observability H" and is denoted with

subscript 0,

(3-37) H H r( (1
0H = [OJf stJrows [Y ) L)L fst J rows

With respect to accuracy, it appears that either one of these two

estimates of HH is adequate. From a computational viewpoint, the

forward H formula has the matrix product UO)(SO))Y /2 in common with

the forward F formula, whereas the matrix product Y) (S()) 1/2 in the

backward F formula is the same as the observability H. Thus, an

efficient approach is to estimate H using the formula dictated by

which formula is used to estimate F.

Matrix F is estimated by solving a least-squares problem

formulated using the output equation for the backward innovations

representation. The resulting formula is

(3-38) IFH = [R 2 1  Ra2  U )(S())12

This expression is analogous to Equation (3-36).

Notice that the Q(.) matrices do not appear in the formulas for

the matrix parameters F, H, and F. The QR decomposition is

fundamental to the algorithm, but only the R(.) matrices have to be
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calculated and stored. This is a very important feature of the
algorithm because one dimension of Q(.) is large (M), and

manipulation of such matrices involves sizable storage and

computational requirements.

Notice also that the QSVD factors V(.) and T(.) appear only in

the backward F formula. In fact, only the product V(.)T(.) is

required in the backward F computation. This fact is important

because it justifies utilization of the partial QSVD algorithm

described in Appendix A.

The remaining matrix parameters for the innovations

representation (2-29) in balanced coordinates are estimated

easily. First, the steady-state correlation matrix of the
innovations representation state, H, and the steady-state

correlation matrix of the backward innovations representation
state, 1b, are estimated as,

(3-39) H = rb = S()
b L

Next, the zero-lag output correlation matrix is estimated directly

from the output sequence as

NT-i
(3-40) A. = 1 Y x(k)XH(k)

NT k=O

(3-41) NT = M +2L- 1

where NT is the number of output data vectors (duration of the

output sequence) used in the algorithm. The innovations

correlation matrix is estimated using Equation (2-30a), repeated

here from completeness as,
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(3-42) = A0 -HHHH

And the Kalman gain is estimated using Equation (2-32a), also

repeated here from completeness as,

(3-43) K = [F - FHH] ýrl = [F- FHH] [A- HHIHIH1

If Q is singular, the pseudo-inverse operator replaces the inverse

operator in Equation (3-43).

3.2 Model Order Determination

Model order determination is a necessary decision for any

identification algorithm in applications where the true order of

the system generating the channel output data is unknown, or where

the true process generating the data may not belong to the model

class adopted to represent the data. In the second case the model

generated by the algorithm is a "representation model," as opposed

to a "physical model" (a model based on analyses of the underlying

physical processes). Determination of model order is always a

difficult problem, and the solution is rarely clear-cut. The Van

Overschee-De Moor identification algorithm does have several

features that lead to robust model order estimation. Principally,

the algorithm identifies the model parameters of the innovations

representation for the multichannel process in balanced

coordinates. In a system representation in balanced coordinates

the position of a state in the state vector is indicative of the

importance of the contribution of that state to the output

correlation sequence (the first state is equal in importance or

more important than the second state; etc.), and the magnitude of

the corresponding correlation matrix element is representative of

the relative contribution of that state.
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As stated in Section 3.1, the prime mechanism for model order

selection in the Van Overschee-De Moor algorithm is examination of

the diagonal values of matrix SL, which is also the steady-state

correlation matrix of the state of both the forward (H) and

backward (nb) innovations models. Matrix SL is diagonal, and its

diagonal elements are real-valued, non-negative, bounded by unity

and zero, and are arranged in order of decreasing magnitude.

Furthermore, these are the canonical correlations between the past

and future of the multichannel output process (Akaike [1975];

Desai et al. [1985]; Roman and Davis [1993b]), which implies that

the state is represented in the coordinates that allow the optimum

prediction of the future of the process given the past. Thus, an

effective model order selection approach is to identify the
negligible diagonal elements of matrix SL, and select the model

order as the number of non-negligible diagonal elements of SL-

In most situations involving a finite amount of noisy data,

all the diagonal values in matrix SL are different from zero

and/or . This is due to the fact that the subspace decomposition

is imperfect with finite amounts of data because the measurement

noise {w(n)} corrupts the past output subspace, and vice versa. In

such cases model order can be estimated by identifying jump

discontinuities in the magnitude of the diagonal values of SL.

In cases where the desired state space model is only a

representative model (as opposed to a physical model) for the data

it is unlikely that a well-defined partition between the non-

negligible and the negligible values be present. Surveillance

radar arrays and medical technology applications fall in this

category. In such cases the balanced coordinates and canonical

correlations concepts provide important insights.

Several functions of the canonical correlations (diagonal
elements of SL) have been used in Phase II to determine model
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order based on the shape of the curve. Specifically, the

following functions have been used in various test cases:

(a) canonical correlations;

(b) normalized running sum of canonical correlations;

(c) squared canonical correlations;

(d) normalized running sum of squared canonical correlations;

(e) log parameters; and

(f) normalized mutual information parameters.

These functions are defined in (Romdn and Davis, 1993b). The best

results have been obtained in most cases using the normalized

mutual information parameters. Mutual information is used often

as a criterion for model order selection (Desai et al., 1985).

For a formulation based on the future and past vectors as

defined in Equations (2-24) and (2-25), Gelfand and Yaglom (1959)

have defined the mutual information between the past and the

future as a real-valued scalar denoted as TI, and computed as

1 JLIn1 P2

(3-44) 21- + k
k=1

where Pk is the kth canonical correlation (kth element of SL), and

In denotes the natural logarithm function. Given this definition,

the normalized mutual information parameter for an ith order model

is defined as

1 In(1-p ) _ __ ____ ___

(3-44) Ti =k=1 _ k=1

( 3 - 4 4 ) 
J LI n ( 1 - P 2)

k=1

The value of this parameter represents the fraction of the mutual

information in the past about the future that is retained by the
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state of the ith-order innovations model for the multichannel

output process. Using the normalized mutual information as
criterion, the model order is the index i for which fi exceeds a

pre-selected threshold TJ, which is a decimal between 0 and 1.

Good results have been obtained consistently using T.= 0.9.

Other considerations for model order determination involve

the three QSVD calculations and are discussed in the Final Report

for Phase I (Roman and Davis, 1993a). Specifically, the first
step in the QSVD for a matrix pair (R(.),R(.)) is to carry out a SVD

for a matrix formed by concatenating in a two-element block column

the Hermitian transpose of the two matrices, and to determine the

rank of the concatenated matrix based on an examination of the

singular values. Rank determination can be a difficult task,

specially when dealing with noisy data and with representation

models (as opposed to physical models). In the QSVD application

of interest herein, over-determination of rank (selecting a value

greater than the optimum value) is more desirable than under-

determination of rank because the latter option places an

irreversible bound on the maximum possible model order. Thus, the

approach adopted in this program is to select the rank of the

concatenated matrix conservatively (over-determined) in order to

allow a larger range of possible values to the model order

selection step using matrix SL.
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4.0 INNOVATIONS SEQUENCE GENERATION

In the approach pursued in this program, the multichannel

output data sequence under each hypothesis is modeled as an

innovations representation (2-29). Thus, once the innovations

model parameters have been identified, a hypothesis filter can be
configured to generate the innovations sequence, Lc(n)}, given the

multichannel output data sequence. One hypothesis filter is

designed corresponding to each hypothesis. Each hypothesis filter

implements sequentially two distinct linear operations, as

indicated in this section. All filter outputs are used in the

likelihood ratio calculations (Section 5.0).

The innovations sequence at the output of a whitening filter

is a white process in time, but, in general, is a correlated

vector at each time instant (the innovations correlation matrix,
0, is non-diagonal). In the context of applications involving

spatially-distributed sensors, the innovations at the whitening

filter output is a temporally white, spatially correlated process.

Spatial whitening can be achieved using an instantaneous linear

transformation. A two-processor configuration to achieve full

whitening is illustrated in Figure 4-1.

~()WHITENING E(n) INSTANTANEOUSX(n) " FILTER LINEAR ' Nov(n)
I I TRANSFORMATION]

Figure 4-1. Two-function hypothesis filter.

The whitening filter for the innovations model (2-29) is a

linear, discrete-time, complex-valued, time-invariant system

described by the following equations:
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(4-la) g(n+l) = [F - KHH]g(n) + Kx(n) n Ž no

(4-ib) E(n) =- HHg(n) + x(n) n Ž no

(4-ic) (no) 0

where x(n) is the whitening filter state vector, f(n)is the temporal

innovations associated with the observation x(n), and K is the

steady-state Kalman gain matrix. The filter initial condition is

set equal to zero because the innovations model initial condition

is zero, Equation (2-29c). A block diagram of the whitening

filter is presented in Figure 4-1, displaying the channel output

vector as input, and the innovations sequence vector as output.

S(n) + g(n+l) I (n) H
X~)KDELAY H H F(n)

Figure 4-2. Whitening filter block diagram.

A one-step predictor formulation for the innovations model

(2-29) can be defined also to generate the innovations, as

described in the Phase I Final Report (Roman and Davis, 1993a).

Both approaches are equivalent, but the interpretation is

different. The whitening filter approach is preferred herein to

emphasize the fact that the desired filter output is white under

matched hypothesis/filter conditions.

In the second block in Figure 4-1 a linear transformation is
applied at each time instant n to the temporal innovations {E(n)} in
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order to generate a temporally- and spatially-whitened process

{y(n)} as follows,

(4-2) y(n) = TH(n)

where TH is a complex-valued, non-singular, JxJ matrix. Matrix TH

is selected such that the temporal innovations covariance, Q, is

diagonalized. Let I denote the diagonal covariance matrix of y(n),

1a 0 ... 0
0 oy 2 ... o0 EznzHnI

(4-3) 2:

0 0 ... 2

From Equation (4-2), 1 and Q are related according to

(4-4) 1 = THQT

Diagonalization of K can be carried out using any one of several

Hermitian matrix factorization approaches. Foremost among these
are the Cholesky factorization, the LDU decomposition, and the

SVD. Each of these factorizations is summarized next.

The Cholesky factorization of the temporal innovations
covariance matrix Q is defined as

(4-5) j = COH

where C is a JxJ complex-valued, lower-triangular matrix with non-

zero elements along the diagonal. Thus, this factorization
requires that Q be non-singular. The Cholesky instantaneous
transformation matrix is denoted as TC, and is obtained as

(4-6) TH = c-0
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And the Cholesky spatial innovations covariance matrix is the

identity,

(4-7) 1C =. Ij

That is, the spatially-whitened innovations have unit variance.

The Cholesky factorization is least desirable for spatial
whitening since it requires that Q have full rank. Michels (1991)

has applied the Cholesky factorization to innovations-based

multichannel detection and to correlated random process synthesis.

The LDU decomposition of the temporal innovations covariance
matrix 92 is a factorization of the form

(4-8) 2 = LDLH

where L is a JxJ complex-valued, lower-triangular matrix with

unity-valued elements along the main diagonal, and D is a JxJ

diagonal matrix with real-valued, non-negative diagonal entries.
In this factorization Q can be rank-deficient, and the rank

deficiency of i2 is manifested with a corresponding number of zeros

along the diagonal of D. The LDU instantaneous transformation
matrix is denoted as Tp, and is obtained as

(4-9) TH= L

And the LDU spatial innovations covariance matrix is equal to the

diagonal matrix in the decomposition,

(4-10) Yp = D

Notice that when 0 has rank-deficiency r, then exactly r spatially-

whitened innovations have zero-valued variance. This condition
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has to be handled appropriately when implementing the likelihood

ratio detector with LDU-whitened innovations.

The LDU decomposition has an interesting interpretation in

the context of spatial whitening. Therrien (1983) has shown that

the LDU decomposition is related to optimal linear prediction.

Specifically, the rows of matrix L-I correspond to the coefficients

(in reverse order) of the optimum linear prediction filters of

orders 0 through J-1, and the diagonal elements of D are the

corresponding prediction error variances. Thus, LDU-based spatial

whitening is equivalent to optimal spatial filtering. This allows

generation of analyses and diagnostics such as filter frequency

response curves, as discussed in Appendix C.

The SVD of the temporal innovations covariance matrix Q is

defined as

(4-11) t = VSVH

where V is a JxJ unitary matrix, and S is a JxJ diagonal matrix

with real-valued, non-negative entries in the diagonal arranged in

decreasing order of magnitude. In this factorization 0 can be

rank-deficient also, and the rank deficiency of Q is manifested

with a corresponding number of zeros as the last diagonal entries

of S. The SVD instantaneous transformation matrix is denoted as

TS, and is obtained as

H H
(4-12) TS = V

And the SVD spatial innovations covariance matrix is equal to the

diagonal matrix in the decomposition,

(4-13) is = D
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Notice that when Q has rank-deficiency r, then exactly r spatially-

whitened innovations have zero-valued variance. This condition

has to be handled appropriately when implementing the likelihood

ratio detector with SVD spatial whitening.

Spatial whitening of the temporal innovations as described

above is useful for diagnostics and analyzing data. Additionally,

LLR detection curves and related results can be generated more

efficiently using appropriately-implemented spatial whitening.

LDU-based spatial whitening is preferred herein due to the insight

it provides as a spatial filter. Software implementation of the

LDU decomposition is straightforward, specially for full rank

Hermitian matrices. However, allowances need to be made in the

code to handle rank-deficient matrices. SSC discovered that the

LDU decomposition in the MATLAB software package generates

reasonably-looking but erroneous results for rank-deficient

matrices.
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5.0 LIKELIHOOD RATIO DETECTION

A detection methodology for complex-valued multichannel

Gaussian processes has been developed by Michels (1991) in the

context of innovations-based detection. This approach has been

generalized recently to include a class of non-Gaussian processes

known as spherically-invariant random processes (SIRPs) and using

linear estimators (Rangaswamy, Weiner, and Michels, 1993).

Michels' methodology can be applied directly to the innovations

sequence generated by the approach formulated herein. For

brevity, only the likelihood ratio equation is presented here.

As discussed in Section 4.0, a hypothesis filter is designed

for each hypothesis based on processing the multichannel data.
The model order for the alternative hypothesis (Hj) whitening

filter is chosen to be larger than the model order for the null
hypothesis (H0 ) whitening filter. Thus, for each hypothesis

filter, the temporal innovations sequence is

(5-1) g(nlHi) = -HHH(nlHi) + x(n) i =0, 1

where the subscript i distinguishes between the two hypotheses.

Similarly, denote the spatial innovations sequence as

(5-2) y(nlHi) = THp(nlHi) i = 0, 1

Also, the steady-state correlation matrix of the temporal
innovations is denoted as Q(Hi), and steady-state correlation

matrix of the spatial innovations is denoted as I(Hi).

Let e(H 0 ,Hj) denote the multichannel likelihood ratio as

defined by Michels (1991) for the Gaussian signal case. Then, the
log-likelihood ratio (LLR) for the temporal innovations can be

expressed as,
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NT FFHO EQ'HI'HO(5-3) In= I In L(°) + FH(nlHo)Q2(H 0) (nlHo)n=no Qa(1')]

- EH(nlH 1 ) 92X (H1) g(nlH1

where IQ(Hi)l denotes the determinant of matrix Q(Hi). The LLR is

compared to a threshold, T, which is calculated adaptively to

maintain a constant false alarm rate (CFAR),

(5-4) in[E(Ho,H1)] = { Ž T select H1

< T select Ho

A candidate CFAR approach with demonstrated good performance

calculates the median of a set of the LLR values from a number of

adjacent range cells (at the same azimuth) on both sides of the

cell in question, and scales the calculated median value by a pre-

determined constant to provide the desired false alarm rate

(Metford and Haykin, 1985).

Michels (1991) has derived the LLR formula for the spatial

innovations generated with LDU-based spatial whitening. Namely,

(5-5) lnlo(Hom, = NT J [n Ok] + I Vk(nlIHO) 12  I Vk(nlIHl )1

nl~n k=1 L lk a~ (71 k

where Vk(nIH) denotes the kth element of &(nIH1 ), and aik2 denotes the

kth diagonal element of X(Hi), as defined in Equation (4-3). Note

that all the terms in Equation (5-5) are scalars. In contrast,

all the terms in Equation (5-3) are functions of matrix

parameters. This is significant for two reasons. First, Equation

(5-5) requires less computations than Equation (5-3) . Second,

Equation (5-5) is applicable over a wider range of conditions. In
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particular, Equation (5-5) can be used, with minor modifications,

in the cases where either one (or both) of the temporal
innovations covariances, Q(Hi), is singular. In such cases

Equation (5-3) cannot be used because the determinant of a

singular matrix is zero (In[0] is undefined), and the inverse of a

singular matrix is undefined. When Q(Hi) is singular, one or more

of the variances ak2 is equal to zero. Given the linear prediction
2

characteristic of LDU spatial filtering, cik = 0 implies that the

kth variable is linearly dependent on the k-1 preceding variables,
so that Ivk(nIHi)I = 0. In other words, LDU spatial filtering

eliminates all statistically-dependent elements of the temporal

innovations vector. Thus, the modification required in Equation

(5-5) is to drop all the terms that involve zero-valued variances.

Of course, the natural logarithm term must be expanded first (In[a/b]

=In[a]-In[b]) so that only the term involving a zero-valued variance

is dropped.

LLR expressions for spatial innovations generated with

Cholesky- and SVD-based spatial whitening are presented by Michels

(1991) and Roman and Davis (1993a), respectively. Those formulas

are similar to Equation (5-5) above. It is important to note that

SVD-based spatial whitening can be used analogously in the cases

where the temporal innovations covariance is singular.
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6.0 AIRBORNE SURVEILLANCE PHASED ARRAY RADAR APPLICATION

Radar systems in general, and surveillance radar array

systems in particular, constitute the primary focus of both phases

of this program. In this section the space/time processing

problem associated with surveillance radar array problem is

formulated and several analyses are presented. The discussion

herein complements the surveillance radar array data generation

model and MATLAB-based software implementation presented in Volume

II of this Final Report.

Consider a coherent radar system with J spatial channels

(each channel is the output of either an individual array element

or a sub-array composed of multiple array elements), as indicated

in Figure 6-1. In a surveillance scenario (see, for example,

Jaffer et al. [1991], or Rangaswamy et al. [1993]), the J-element,

discrete-time, baseband, complex-valued, finite-duration, vector
sequence {x(n) I n = 0, 1, ... , NT-1 is the return from the radar

resolution (range-azimuth) cell received at each of the J channels

for the duration of the coherent processing interval (CPI), which
consists of NT data points. In the hypothesis testing formulation

adopted herein, the null hypothesis (H0 ) corresponds to the case of

target absent, and the alternative hypothesis (H1 ) corresponds to

the case of target present. Under the null hypothesis, the vector

sequence {X(n)} contains clutter, interference, and noise (Equation

(2-1a)). Under the alternative hypothesis, {x(n)} also contains

target information (Equation (2-1b)). The vector sequence is

assumed to be zero-mean and Gaussian-distributed under both

hypotheses. Thus, the radar return process is specified by its

correlation structure; specifically, its correlation matrix
sequence {Rxx(m)}. In turn, the structure and performance of

detection algorithms are driven by this correlation structure.
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... Channel1

IRECEIVER No {xl(n)ln=O,1,...,N-1}

ChannelJ
BPIRECEIVER No= {xj(n) ln=0,1,...,N-1}

xj(n): complex-valued received signal at the jth array element

corresponding to the return from the nth pulse

Receiver: demodulation, temporal sampling, etc.

Figure 6-1. Multichannel signal in a coherent surveillance radar
array system.

The surveillance radar array model presented in Volume II of

this Final Report includes a description of the correlation matrix

sequence of each of the components present in {x(n)1. It is

convenient to state herein the key correlation features of each

component, as modeled in Volume II, using the notation established

in Table 6-1 below. Moving targets have both temporal and spatial
correlation, and for a single target, rank(Rs) = 1 and rank(RT) = 1.

Ground clutter also has both temporal and spatial correlation, and

the temporal and spatial correlations are coupled. This coupling

(space-time correlation) is the reason why clutter is difficult to
handle. For clutter, rank(Rs) > 1 and rank(RT) > 1. Broadband

interference only has spatial correlation, and for a single
interference source, rank(Rs)=1 and RT is diagonal. Receiver noise

is uncorrelated in time as well as in space. Thus, for noise both
Rs and RT are diagonal. These differences in correlation structure

translate into differences in the spectral domain, and are

exploited (to different degrees of success) by the various

space/time processing algorithms.
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SPATIO/TEMPORAL CORRELATION MATRIX
x(0) Rxx(0) Rxx(1l) .. Rxx(-N+I)

x(1) Rxx(1) Rxx(O) ... Rxx(-N+2)
x = LPR= E[xxHI= ..

x( 1Rxx(N -1) Rxx(N -2) . . Rxx(0)

SPATIAL CORRELATION MATRIX

x,(n)

x(n) = Rs = E[x(n)XH(n)]

_xj(n)_

TEMPORAL CORRELATION MATRIX

xj(O)
x1(1)

Xj = j RT = E[xjxjH]

xj(N-1)

Table 6-1. Data vector and correlation matrix definition for the
three conventional space/time processing configurations.

6.1 Conventional Space/Time Processing

In the surveillance radar array application the objective is

to detect the target while canceling the spatial interference and

clutter. Conventional means to accomplish this objective
determine a set of JNT complex-valued weights that are applied to

the radar return sequence {x(n)J. These weights implement a beam

pattern with nulls placed as close as possible (subject to
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physical beam pattern constraints) to the direction of arrival of

the incoming clutter and interference. These weights also place

nulls in the temporal frequency response corresponding to the

center Doppler frequency of the clutter and interference.

Wang and Cai (1994) classify the conventional space-time

processing configurations for the detection of a moving target

into the following three major categories:

(a) optimum joint-domain configuration,

(b) space-time configuration, and

(c) time-space configuration.

The relevant data vector and covariance matrix definitions for

these configurations are presented in Table 6-1. In the optimum

joint-domain configuration a spatio-temporal performance criterion

(signal-to-interference-plus-noise ratio) is formulated and

optimized jointly (for the space and time domains). This results
in a JNT-dimensional weight vector which is applied to the JNT-

dimensional vector X formed by concatenating the NT random vectors

{x(n) In=0,1,...,NT-1, as defined in Table 6-1. A block diagram for

this configuration is presented in Figure 6-2 for the case of a

known signal, as discussed in Wang and Cai (1994).

The other two configurations are approximations to the

optimal configuration, based on formulating the problem as a

cascade of two separate problems in order to reduce the

computational burden. In the space-time configuration a spatial-

domain (beamforming) problem is addressed first, and then a

temporal-domain problem is addressed. An optimum solution (in the

localized sense) is obtained for each of the two separate

problems, and the solutions are applied sequentially to the data,

as indicated in Figure 6-3 (also for the case of a known signal).

In the time-space configuration temporal domain weighting preceeds
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the beamformer. A block diagram for the time-space configuration

is presented in Figure 6-4 for the known signal case. Variations

of these configurations have been proposed by Jaffer et al. (1991)

and Ward (1994), among others. In most of those alternatives

temporal weighting is replaced with a Doppler filter bank,

implemented using the DFT.

Each of the configurations listed above admits approximations

defined to reduce further the computational load. This is true

even for the spate-time and time-space configurations, which are

themselves approximations to the optimum joint-domain approach.

Two important approximations to the optimum approach are the

"block sliding" algorithm proposed by Jaffer et al. (1991), and

the joint-domain localized generalized likelihood ratio (JDL-GLR)

proposed by Wang and Cai (1994).

_• JOINT-DOMAIN 71

WEIGHTING

{_ (n) }

-- WEIGHT DETCISION
ESTIMATION DCSO

Known Spatial Threshold
and Temporal
Signal Vectors

Figure 6-2. Joint-domain configuration block diagram.
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{x1 (n)} -(x n)SPATIAL z TEMPORAL I]

xv(n)) -. WEIGHTING WEIGHTING
Signal DETECTION

SPATIAL TEMPORAL DECISION

WEIGHT WEIGHT

ESTIMATION ESTIMATION

Known Spatial Known Temporal Threshold
Signal Vector Signal Vector

Figure 6-3. Space-time configuration block diagram.

, TEMPORAL "-P6
WEIGHTING

SPATIAL

xj"ITEMPORAL zLI WEIGHTING

WEIGHTING

-- I~lT7EMPORAL SPAT1 SPAIAL i .D

WEIGHT WEIGHTDECTO

v ESTIMATION ESTIMATION DCSO

Known Temporal Known Spatial Threshold
Signal Vector Signal Vector

Figure 6-4. Time-space configuration block diagram.
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6.2 Model-Based Space/Time Processing

The SSC model-based multichannel detection configuration

developed in Phase I (Roman and Davis, 1993a) applies directly to

the space/time processing problem, and can be classified as a

joint-domain technique. A block diagram for this configuration is

presented in Figure 6-5, which is the off-line version of Figure

2-1. As described in Section 4.0, the innovations sequence,
M(nIHi)}, is uncorrelated in time as well as in space for the signal

path corresponding to the hypothesis which is true, and is

correlated in time and in space for the signal path corresponding

to the hypothesis which is false. This difference is sufficient

to allow making the detection decision. Of course, the sequence
{v(niHi)} is a true innovations process only for the signal path

corresponding to the true hypothesis.

Innovations

A ULTENTV SequenceTheod

HYPOTHESIS
FILTER {y(nI Ho)}

{xn}• FILTER RATIO NoDECISION
SELECTION H ICALCULATION CALCULATION

i Innovations F

.. ALTERNATIVE tSequence Threshold

HYPOTHESIS
FILTER Ivn H 1)}

Figure 6-5. Multichannel model-based detection configuration with
off-line parameter identification for space/time processing.

Each of the two filters in Figure 6-5 is a whitening filter

for the respective case (null or alternative hypotheses). As
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indicated in Section 4.0, the whitening takes place in two steps.

In the first step a dynamic filter is used to generate the
temporal innovations sequence {g(nIHi)} with covariance matrix 92(Hi),

which is uncorrelated in time and is less correlated in space than

the radar return sequence at the filter input, {x(n)). This

reduction in spatial correlation is expected since the whitening

filter in Figure 4-1 is a multichannel operator which takes into

consideration both temporal and spatial correlation information.

The degree of reduction in spatial correlation can be ascertained
by comparing the normalized off-diagonal terms of Q(Hi) with the

normalized off-diagonal terms of RS (the (i,j)th normalized off-

diagonal element in a covariance matrix is the correlation
coefficient between the ith and jth random variates). In the second

step an instantaneous linear transformation is applied to whiten

the temporal innovations along the spatial direction. This

results in the spatially- and temporally-white innovations
sequence {y(nIHi)1 with diagonal covariance matrix I(Hi).

6.3 Space/Time Process Modeling and Filtering Analyses

Sample realizations of the channel output process have been

analyzed to identify state variable models for the ground clutter

process and to design the two-function hypothesis filters (Figure

4-1) for the multichannel model-based detection configuration in

Figure 6-5. The radar array output realizations have been

generated using the space/time process simulation described in

Volume II of this Final Report. Model parameters were identified

using the Van Overschee-De Moor (VODM) algorithm and the canonical

correlations (CC) algorithm (Roman and Davis, 1993b). Hypothesis

filters generated using the VODM algorithm produced less whitening

of the clutter process. Thus, the results presented in this

section were generated using the CC algorithm. SSC will continue

to evaluate this issue, including the possibility of a software

implementation error.
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Table 6-2 lists the baseline parameters and conditions used

in the simulations reported herein. These parameters are as

described in the data generation software model of the companion

Volume II (Roman and Davis, 1996) . Other parameters and

conditions have been run, producing results similar to those

presented next. Results are presented for two sets of runs;

namely, the known auto-correlation sequence (ACS) case (Figures 6-

6 through 6-17), and the estimated ACS case (Figures 6-18 through

6-26). In both sets of runs the system model parameters (model

order; ACS lags used to identify the model; etc.) are selected to

be the same.

Consider first ACS case wherein the true ACS is utilized to

identify the model and whitening filter parameters. Figure 6-6

presents the channel output power spectrum estimated via the

discrete Fourier transform (DFT) of the weighted two-dimensional

(2-D) ACS, wherein a 60-dB sidelobe Dolph-Chebyshev lag window is

applied to weight the data along each axis (the 2-D ACS for an

array output sequence is defined in Volume II). This spectrum

estimation approach is known as the weighted Blackman-Tukey

method, independent of the lag window type that is applied.

Characteristically, the spectrum in Figure 6-6 exhibits strong

suppression of sidelobe leakage and reduced spectral feature

resolution. Notice the clutter ridge along the cross-diagonal
(clutter ridge slope i =I), with mainlobe centered at fcdo=0. 2 4 9 4

and fc0o = 0.2493 normalized Doppler and spatial frequencies,

respectively. The clutter ridge exhibits J -1 = 7 peaks, as

expected. Notice also the two jammer ridges, centered at
normalized spatial frequencies fis =0.2113 and fis = -0.3214, and flat

over the normalized Doppler frequency domain. The parameters in

Table 6-2 result in a clutter-to-noise ratio (CNR) of 47.75 dB,

and a jammer-to-noise ratio (JNR) of 38.0 dB.
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PARAMETER PARAMETER (UNITS) VALUE
TYPE

Number of linear array elements, J 8

Number of points in one CPI, N 64

Number of elevation axis elements, Je 4

Array mainbeam azimuth angle, phiO (deg) 30

Peak transmitted power, Pt (kW) 200

Pulse (uncompressed) duration, Tu (jisec) 200

RADAR Pulse repetition frequency (Hz) 300

ARRAY Radiation frequency, fC (MHz) 450

SYSTEM Receiver bandwidth, fB (MHz) 4

Transmit pattern gain, Go (dB) 22

Receive element gain, Ge (dB) 4

Receive element backlobe pattern attenuation, Gb (dB) -30

Noise figure, Fn (dB) 3

System losses, Ls (dB) 4

Transmit pattern array option, patopt UNIFORM

Platform altitude, Hp (km) 9

SURVEILLANCE Platform velocity, Vp (m/sec) 50

SCENARIO Range to principal ground clutter ring, rc (km) 130

Aircraft platform crab angle, gamma (deg) 0

Narrowband process amplitude, a 0.99

Target radial velocity, Vt (m/sec) 33.333

TARGET Target azimuth angle, phit (deg) -30
Target elevation angle, thetat (deg) 0

Signal-to-noise ratio, SNR (dB) 0

Jammer azimuth angle, phii (deg) 25; -40

INTERFERENCE Jammer elevation angle, thetai (deg) 0; 0

Jammer power, vari 3310; 3000

GROUND CLUTTER Number of ground patches illuminated by mainbeam, Nc 361

ARRAY NOISE Receiver noise power per channel, varn 1
Number of block rows/columns in Hankel matrix, L 6

SIMULATION Number of realizations used in filter design, Nrd 10
PARAMETERS Number of realizations used in filter evaluation, Nre 10

Data window sidelobe level (for plots), dwindb (dB) 60

Table 6-2. Scenario, system, and simulation parameters for
baseline simulation analyses.
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A tenth-order innovations representation (IR) model was
identified using M=13 lags of the true ACS (L=6 block rows and

columns in the Hankel matrix of the CC algorithm). Figure 6-7

presents the power spectrum of the output of thetenth-order state

variable model driven by a temporally- and spatially-uncorrelated

sequence. The seven clutter ridge peaks are noticeable, and the
spectrum has a ridge at each jammer's spatial frequency. This

spectrum exhibits much higher resolution than the spectrum in

Figure 6-6, as expected from an analytical model.

The canonical correlations, {pili=1,...,JL} where JL=48, for

this case are presented in Figure 6-8, and the normalized mutual
information parameters, {r1ii=1 ...,JL}, obtained from the canonical

correlations (Equation 3-44) are presented in Figure 6-9.

Referring to Figure 6-9, the dashed (--) horizontal line

represents a mutual information threshold of 0.997, and the dashed

(--) vertical line represents the model order selected for that

threshold. Model order ten was selected because for an equi-
spaced element linear array model order J-1 = 7 suffices to provide

whitening of channels 0 through J-2, but additional temporal

dynamics are required to whiten channel J-1 also (with the jamnmers

absent, there are seven canonical correlations with value slightly

less than unity, instead of five as in Figure 6-8). A map of the

IR model multivariable poles and zeros is presented in Figure 6-
10, using the definition of multivariable system zeros proposed by

Davison and Wang (1974; 1976). The identified tenth-order model

has ten multivariable poles and ten multivariable zeros, and they

reverse roles for the whitening filter (the IR model poles and

zeros become the zeros and poles, respectively, of the whitening

filter). This is a property of the IR and its inverse for the

Davison-Wang definition of transmission zeros. It is appropriate

to mention herein that the MATLAB routine tzero of the Signal

Processing Toolbox, which calculates transmission zeros, gives

incorrect results in cases where the data is complex-valued.
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Routine tzero is an implementation of the numerical algorithm of

Emami-Naeini and Van Dooren (1982) to calculate transmission

zeros. However, SSC tested the MATLAB code, and discovered

several inconsistencies; thus, SSC generated its own routine based

on the Laub-Moore numerical algorithm for the Davison-Wang

multivariable transmission zeros.

Figures 6-11 through 6-13 present three different views of

the power spectrum of Figure 6-7. The top view, Figure 6-11,

shows the clutter ridge with mainlobe at approximately [d=0.2 5 and

fs= 0.25 normalized Doppler and spatial frequencies, respectively,

as well as the jammer ridges at approximately fs= 0.21 and fs =-0.32

normalized spatial frequencies. The jammer ridges are noticeable

also in the projection to the spatial frequency axis, Figure 6-12.

The projection to the Doppler frequency axis, Figure 6-13,

complements the other figures.

Four different views of the clutter process whitening filter

(both temporal and spatial whitening) power spectrum are presented

in Figures 6-14 through 6-17. The 3-dimensional view in Figure 6-

14 is from the same perspective as Figures 6-6 and 6-7 to allow

direct comparison. The top view, Figure 6-15, shows the clutter

notch at unity slope (along the cross-diagonal), a notch centered

at approximately fs=0.25 to cancel the clutter mainlobe (centered

at fcdo = 0.2494 and fc 0 = 0.2493) and the jammer at fis=0.2113, and a

notch centered at approximately fs = -0.32 to cancel one of the

secondary lobes and the jammer at fis=-0.3214. Figure 6-16 presents

the projection to the spatial frequency axis, wherein the notches

at approximately fs = 0.21 and fs = -0.32 are appreciated better.

Notice that the notch at fs =0.21 is deeper, as expected, since the

jammer at fs =0.21 has more power (Table 6-2). The projection to

the Doppler frequency axis is presented in Figure 6-17.
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Consider now the case where an estimate of the true ACS is

utilized to identify the IR model and whitening filter parameters.

The ACS estimate is generated by averaging ten biased, time-

averaged estimates of the ACS (parameter Nrd in Table 6-12). A

modified, averaged periodogram of the channel output process is

presented in Figure 6-18. The term "modified" accounts for the

fact that a 60-dB Dolph-Chebyshev data window is applied along

each axis to the data matrix prior to application of the 2-D DFT.

Following application of the DFT, the power at each frequency is

calculated to obtain the periodogram, and ten statistically-

independent periodograms are averaged. As expected, this spectrum

is very similar to the Blackman-Tukey spectrum in Figure 6-6, and

the clutter ridge and the two jammer ridges are distinguished

easily. A tenth-order IR model was identified using only M=13

lags of the estimated ACS, and the power spectrum of the IR model

output is presented in Figure 6-19. This spectrum compares well

with the spectrum in Figure 6-7, which was identified using the

true ACS. Notice that the width of the jammer ridges is

comparable in both spectra, although the IR model based on the

true ACS has sharper features. Also, the clutter ridge mainlobe

and sidelobes are defined well in Figure 6-19.

The canonical correlations, {piIi=1,...,JL} where JL=48, for

this case are presented in Figure 6-20, and the normalized mutual
information parameters, {iIli= 1,... ,JL}, obtained from the canonical

correlations (Equation 3-44) are presented in Figure 6-21. Notice

that the first five canonical correlations are measurably less

than unity (compare with Figure 6-8), and notice also that the

"knee" in the curve at index value 10 is more marked than in

Figure 6-8. Other independent runs based on an ACS estimated in

the same manner result in very similar curves. With respect to

Figure 6-21, the dashed (--) horizontal line represents a mutual

information threshold of 0.96, and the dashed (--) vertical line

represents the model order selected for that threshold. Model
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order ten was selected to allow comparison with the previous case.

A map of the IR model multivariable poles and zeros is presented

in Figure 6-22. Pole locations are very similar to those in

Figure 6-10, but there are marked differences in the locations of

the multivariable zeros. The main difference is that five zeros

are close to the origin in this case, whereas all zeros are spread

out in the case based on the true ACS. This is the cause of the

broader spectral features of the IR model power spectrum in Figure

6-19 in relation to the IR model power spectrum in Figure 6-7.

The whitening filter was applied to ten independent
realizations (parameter Nre in Table 6-12) of the channel output

process, and the unweighted periodograms of the ten residual

sequences were averaged. The resulting spectrum is presented in

Figure 6-23 in the same scale and 3-D perspective as the channel

output spectrum in Figure 6-18. Notice that the residual spectrum

is white, since it oscillates by just a few dB about the noise

floor.

An estimate of the channel output ACS, {AmIm=0,1,...,MI, was

generated using the identified system model parameters in
Equations (2-12) and (2-14). Actually, ACS lags beyond M can be

generated also, but M is the number of lags used to identify the

model. The real and imaginary components of the true (solid line)
and model (dashed line) ACS for channel 0 are presented in Figures

6-24 and 6-25, respectively. Notice that the fit is very good at

all lags, specially considering that the model parameters for

these results are identified using an estimated channel output ACS
(as opposed to the true channel output ACS). Similar results are

true for the ACS of the other channels.

The capability for moving target detection is demonstrated in
Figure 6-26, wherein the unweighted periodogram of the channel 4

residual of the clutter-only (null) hypothesis filter is presented
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for the case where the channel output sequence includes a target

at 0 dB SNR (alternative hypothesis is true). Target parameters

in Table 6-2 place the target spectral peak at the following

normalized frequencies: ftdl = 0. 0 8 3 4 and fts :=-0.25. In Figure 6-26,

the solid line (--) corresponds to the channel 4 residual

periodogram averaged over ten residual realizations, the dashed

line (--) corresponds to the theoretical (model-based) residual

power for that channel, the dash-dot line (-.) corresponds to the

realized residual power averaged over ten realizations, and the

dotted line (7.) corresponds to the ±one-sigma bounds for a white

process with the theoretical residual power. The theoretical

residual power for channel 4, the (5,5) element of Q(H0 ), is 25.04

dB. And the realized residual power, which includes the target

power, is 25.34 dB. Notice that all the spectrum points except

one are within the ±one-sigma bounds, which is an acceptable

condition. Notice also that the spectrum is white (approximately

flat). These bounds include a factor to account for the

frequency-domain averaging. The moving target is detected easily

at a normalized Doppler frequency in the vicinity of fd = 0.083,

since it is approximately 5 dB above the noise spectrum floor.

The results presented herein indicate that the multichannel

innovations-based detection configuration (Figure 6-5) using state

variable model hypothesis filters is a feasible option for moving

target detection in airborne surveillance scenarios using phased

array radar systems. Further analyses should be carried out to

establish the detection performance as a function of key

parameters and in relation to other methods. Such methods include

the optimum joint-domain algorithm and its approximations.
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TRUE LOG POWER SPECTRUM (Weighted ACS)
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Figure 6-6. Logarithm of the normalized channel output power
spectrum (Blackman-Tukey spectrum estimate; true ACS case).
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Figure 6-7. Logarithm of the innovations representation model
power spectrum (true ACS case).
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CANONICAL CORRELATIONS

0.9

0.8

z-0.7

o

. 0.4

Co I
• 0.3

0.2

0'1

0 5 10 15 20 25 30 35 40 45 50
index, i

Figure 6-8. Canonical correlations of the channel output process
(true ACS case).
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Figure 6-9. Normalized mutual information for model order
selection (true ACS case).
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INNOVATIONS REPRESENTATION MULTIVARIABLE POLE-ZERO MAP
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Figure 6-10. Map of the multivariable poles and zeros of the
tenth-order state-space model (true ACS case).
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Figure 6-11. Top view of the logarithm of the innovations
representation model power spectrum (true ACS case).
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MODEL OUTPUT LOG POWER SPECTRUM
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Figure 6-12. Spatial-frequency axis projection of the logarithm
of the state-space model power spectrum (true ACS case).
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Figure 6-13. Doppler-frequency axis projection of the logarithm
of the state-space model power spectrum (true ACS case).
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WHITENING FILTER LOG POWER SPECTRUM
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Figure 6-14. Logarithm of the whitening filter power spectrum
(true ACS case).
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Figure 6-15. Top view of the logarithm of the whitening filter
power spectrum (true ACS case).
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WHITENING FILTER LOG POWER SPECTRUM
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Figure 6-16. Spatial-frequency axis projection of the logarithm
of the whitening filter power spectrum (true ACS case).
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Figure 6-17. Doppler-frequency axis projection of the logarithm
of the whitening filter power spectrum (true ACS case).
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ARRAY OUTPUT LOG POWER SPECTRUM (Modified Averaged Periodogram)
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Figure 6-18. Logarithm of the channel output power spectrum
(modified, averaged periodogram; biased, time-averaged ACS case).
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Figure 6-19. Logarithm of the innovations representation model
power spectrum (biased, time-averaged ACS case).
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CANONICAL CORRELATIONS
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Figure 6-20. Canonical correlations of the channel output process
(biased, time-averaged ACS case).
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Figure 6-21. Normalized mutual information for model order
selection (biased, time-averaged ACS case).
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INNOVATIONS REPRESENTATION MULTIVARIABLE POLE-ZERO MAP
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Figure 6-22. Map of the multivariable poles and zeros of the
tenth-order state-space model (biased, time-averaged ACS case).
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Figure 6-23. Logarithm of the residual process power spectrum
(periodogram; biased, time-averaged ACS case).
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REAL PART OF NORMALIZED TRUE AND MODEL ACS (CHANNEL 0)
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Figure 6-24. Real part of the normalized channel 0 true and model
ACS (biased, time-averaged ACS case).
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Figure 6-25. Imaginary part of the normalized channel 0 true and
model ACS (biased, time-averaged ACS case).
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CHANNEL NO. 4 RESIDUAL AVERAGED PERIODOGRAM (Rect Window)
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Figure 6-2 6. Logarithm of the channel 4 residual power spectrum
(averaged periodo gram; biased, time-averaged ACS case with 0 dB

SNR target).
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7.0 ECG DIAGNOSTICS APPLICATION

Multilead (multichannel) electrocardiography was selected in

Phase II as an area for dual-use investigation since multichannel

data is available inherently, and the approaches used in the

industry are based on single-channel methods, as far as SSC has

been able to assess. Model-based multichannel methods allow

utilization of the cross-channel information in the multilead

electrocardiogram (ECG) in order to enhance diagnostic capability.

The multichannel identification techniques discussed in this Final

Report can generate low-order models to represent effectively the

cardiac abnormalities considered in this task. Modeling and

diagnostic determination results are presented herein for normal

ECGs and two cardiac conduction abnormalities.

Early results obtained in the first year of this Phase II

program were presented at the Fourth Annual IEEE Dual Use

Technologies And Applications Conference (Romdn and Davis, 1994).

Updated and more extensive analyses were presented at the American

College of Cardiology 45th Annual Scientific Session (Romdn et

al., 1996a), and at 23rd Annual Computers in Cardiology conference

(Roman et al., 1996b).

7.1 Multichannel Electrocardioaraphy

The human heart is a sophisticated pumping system that

functions in a cyclical sequence of muscular contractions and

relaxations of the myocardial cells in the heart muscle, as

described by Wagner (1994) and Guyton (1991). These muscular

actions are induced by action potentials, which are rapid changes

in the electric potential of cell membranes. During an action

potential cycle in a cell, the cell membrane goes from the large

negative polarization state of the resting stage, through a

depolarization stage to a positively-polarized state, and through
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a repolarization stage back to the resting stage. In a myocardial

cell the action potential cycle is activated by an external

source, and a mechanical cycle of physical contraction and

relaxation accompanies (with a slight delay) the electrical

polarization cycle as the cell goes through an action potential

cycle. Action potentials propagate from one region of a

myocardial cell to the rest of the cell, and from one myocardial

cell to another.

Action potentials also propagate through various groupings of

specialized fibers at a rate which is several times faster than

myocardial cell-to-cell propagation. These fiber groupings

constitute the cardiac conduction system and are referred to as

nodes, pathways, bundles, and bundle branches. Conduction system

fibers lack contractile capability, but are efficient propagators

of the action potential impulse. Additionally, they are capable

of automatic activation of the action potential cycle, a feature
referred to as self-excitatory. A sketch of the human heart and

the cardiac conduction system is presented in Figure 7-1, which is

adapted from Guyton (1991) and Wagner (1994). Notice in Figure 7-

1 the base-to-apex reference axis which runs from the center of

the base (top) of the heart to the center of the apex (bottom) of

the heart, and indicates the natural orientation of the heart.

The sinus node (also referred to as sinoatrial or S-A node)

of the cardiac conduction system is located at the top of the

right atrium, as indicated in Figure 7-1. This node controls the

rate of beat of the entire heart. Sinus node fibers are self-

excitatory, which allows them to initiate the cardiac cycle. The

electric action potentials that originate in the sinus node fibers

pass on to the three internodal pathways that extend from the
sinus node to the atrioventricular (A-V) node along the atrial

walls. From the A-V node the action potential passes to the A-V

bundle. In the A-V node and A-V bundle a delay is introduced in
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the propagation of the action potentials. This delay allows the

atria to discharge all its contents into the ventricles before the

ventricles contract. The A-V bundle branches into two parts, the

right bundle branch and the left bundle branch. The right bundle

branch runs downward along the length of the right ventricle and

divides into smaller branches which further divide into smaller

and smaller branches. In this manner most parts of the right

ventricle are reached directly. The left bundle branch runs

downward along the length of the left ventricle and similarly

divides into smaller branches to reach most parts of the left

ventricle. This electrical activity is repeated every cardiac

cycle.

Base-to-apex axis

Atrioventricular (A-V)
node

Sinus node A-V bundle

Internodal Left bundlepathwaysf "-..'. - -.
..... /o ,"branch

Right .-

atrium

R ight --------------- ....

ventricle

Right bundle Apex
branch

Figure 7-1. Cardiac conduction system of the human heart.

88



An ECG is a recording of the electrical activity of the heart

taken at the surface of the body. Most modern ECG systems

generate multiple, simultaneous recordings. Each recording is

made with a pair of electrical leads, with a third lead serving as

the ground reference. The features of an ECG waveform correspond

to the activation sequence of the cardiac conduction system
summarized above. Each independent lead placement configuration

generates a trace with distinct characteristics. An important

lead placement configuration is the base-to-apex configuration

illustrated in Figure 7-2. The normal ECG waveform recorded in

the base-to-apex lead configuration exhibits the form shown Figure

7-3. As indicated in Figure 7-3, the main wave features of this
waveform are denoted by the letters P through U. The initial wave

of the cardiac cycle, denoted as P, represents activation of the

atria. Activation of the right atrium is represented by the first
part of the P wave. The middle of the P wave coincides with

completion of right atrial activation and initiation of left
atrial activation. The final section of the P wave represents

completion of left atrial activation. The A-V node is activated
during the middle of the P wave, and this activation proceeds

slowly toward the ventricles during the final segment of the P

wave. The wave that represents electrical recovery of the atria

is usually obscured by the waves representing ventricular
depolarization. The next group of waves recorded is the QRS
complex, which represents the activation of the ventricles. By

convention, a negative wave at the onset of the QRS complex is

called a Q wave. The predominant positive portion of the QRS
complex is called the R wave, regardless of whether or not it is

preceded by a Q wave. The negative deflection following the R

wave is called an S wave. The wave in the ECG trace that
represents recovery of the ventricles is called the T wave. The T

wave is sometimes followed by another small positive wave called
the U wave (Wagner, 1994). The source of the U wave is unknown.

The various waves present in Figure 7-3 are representative of the

89



waves in ECG traces of other lead pairs, although other features

(such as an M-shaped or split R wave) are common in other leads.

Base-to-apex axis

Recorder

SSCgraph

Figure 7-2. Base-to-apex lead placement configuration.

R

T

PQ

S

Figure 7-3. Single-cycle ECG trace for the base-to-apex lead
placement configuration.
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The time interval from the onset of the P wave to the onset

of the QRS complex is called the PR interval, and it is a measure

of the time between the onsets of activation of the atrial and

ventricular myocardium. The QRS interval measures the time from

beginning to end of ventricular activation. Since activation of

the thicker left ventricle requires more time than the right
ventricle, the terminal portion of the QRS complex represents only

left ventricular activation. The ST segment is the interval

between the end of ventricular activation and the beginning of

ventricular recovery.

Conduction abnormalities occur when any of the components in

the cardiac conduction system are damaged and fail to function as

intended. Such failure can be complete or partial to various

degrees. When a failure in the conduction fiber system occurs,

the action potentials still propagate via the myocardial cell-to-

cell mechanism. This is a slower mode, and is manifested in the
ECG as an elongation of the waves in the QRS complex. Of interest

herein is conduction blockage of the left or right bundle

branches. These abnormalities are referred to as left bundle

branch block (LBBB) and right bundle branch block (RBBB),

respectively. LBBB and RBBB conditions are categorized further as

either complete or incomplete, depending on the extent of the

blockage.

Multichannnel recording of the ECG is accomplished with a

standard 12 lead configuration, as described by Wagner (1994).

This set of leads consists of a six-lead frontal plane subset and

a six-lead transverse plane (or precordial) lead subset. The
frontal plane leads are placed on the limbs and are used to create

an electrical picture of the heart at 30-degree angular intervals

around the frontal plane of the heart. Actually, there is
considerable redundancy in the frontal plane lead set because the

traces from only two lead positions suffice to synthesize
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algebraically the traces from the remaining four lead positions.

The transverse plane of the heart is sensed with the precordial

lead configuration, which are denoted as leads Vl through V6.

Since the precordial leads provide a panoramic view of cardiac

electrical activity progressing from the thinner right ventricle

across the thicker left ventricle, the positive R wave normally

increases in amplitude and duration from Vl to V4 or V5.

Within a single channel, distortions in the various component

waveforms of the ECG and variations in the waveform interval

durations can be indicative of abnormalities. Enhanced

information is obtained by examining the signals from multiple

leads. In fact, some abnormalities can be detected only by such

means. Numerous automatic diagnostic programs exist to augment

the physician's assessment (Willems et al., 1990). Most of these

programs, however, are rule-based systems which operate on single-

lead features in the multilead data. The underlying cross-channel

information is not exploited directly in such systems.

Abnormality detection using ECGs can be formulated as a

hypothesis testing problem, and the SSC model-based detection

methodology can be applied. ECG traces can be modeled as a

stochastic signal in additive zero-mean Gaussian noise (Zywietz,

et al., 1990). Adopting a different viewpoint, ECG traces can be

modeled also as a deterministic signal in additive zero-mean

Gaussian noise. The SSC model-based detection methodology can be

applied in either of these two contexts, and each of these two

contexts involves a different modeling philosophy and

identification algorithm. In a binary hypothesis formulation, the

null hypothesis can be selected as the normal ECG case in additive

noise, and the alternative hypothesis can be selected as the

abnormal ECG case (encompassing all possible abnormalities) in

additive noise. In the more general multiple hypothesis

formulation, the null hypothesis can be selected as the normal ECG
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case in additive noise, and one alternative hypothesis -can be

assigned to each abnormality selected for discrimination.

7.2 CSE Database

SSC procured the multilead database of the Common Standards
for Quantitative Electrocardiography (CSE) for use in assessing

the efficacy of multichannel modeling and identification

techniques in ECG diagnosis. This database was developed by J. L.

Willems and his associates (Willems, 1990) at the CSE Coordinating
Center, Division of Medical Informatics, University of Leuven,

Leuven, Belgium, over a number of years under the auspices of the

Commission of the European Communities. As such it is the product
of contributions from multiple European facilities. The database

is available in compact disk read-only memory (CD ROM) media.
This particular database was at first planned to be an annotated

teaching database. However, the philosophy of the CSE
coordinating center changed, and it was decided that it would

become a testing database. Consequently, the diagnostic

annotations are witheld from purchasers of the database.

Unfortunately, the product documentation did not reflect this fact
prior to our procurement of the database. SSC addressed this

drawback by establishing a working relation with Dr. Victor G.
D~vila-Rom~n, a research cardiologist at Washington University

School of Medicine, St. Louis, MO. Dr. Ddvila-Romdn collaborated
with SSC in defining the ECG discrimination problem reported
herein, and provided diagnoses for many cases in the CSE database.

In particular, Dr. Ddvila-Romdn identified the normal, LBBB, and

RBBB cases utilized in the validation procedure (Section 7.4).

In the CSE multilead database, 250 patient case records are
divided into two sets of 125 ten-second digital recordings. Both
normal and abnormal cases are included, and approximately 26

different abnormalities are represented. These recordings have
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been -taken simultaneously for the standard 12 leads and the 3

vectorcardiogram leads at 500 Hz sampling rate (2 msec sampling

interval) with 16-bit resolution. This database is the premier

ECG database accessible to the biomedical research community. It

is regretful that the data is difficult to access and the

documentation is deficient.

Jointly with the database, SSC received from the CSE

Coordinating Center a copy of the CSE Database Display, Version

1.00, which is a software program developed at the Biomedical

Systems Laboratory, School of Electrical Engineering, University

of New South Wales (UNSW), Sydney, Australia. This biomedical

research group also owns a copy of the CSE multilead database, and

they developed the software to facilitate use of the database.

The CSE Database Display software allows efficient access,

display, and printout of the records in the CSE database. The

software was provided on a 3.5" high-density IBM-compatible floppy

diskette. Upon receipt of the database, SSC exercised the

software with several of the ECG files, and noticed that the

software was operating incorrectly in some cases. This was

mentioned to Dr. Branko Celler at UNSW. Dr. Celler and his

colleagues identified the problem in the software, and generated

an updated version of the program. SSC received a copy of the

corrected software, and has exercised it extensively. UNSW and

SSC have agreed to share diagnostic information for the cases in

the database.

7.3 Modeling and Discrimination Using CSE Data

Normal/abnormal ECG modeling and discrimination capability of

the SSC model-based multichannel detection methodology is

discussed herein. A scalar (single-input, single-output) state-

space model is presented also for one of the selected leads.
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These results were presented at the Fourth Annual IEEE Dual Use
Technologies And Applications Conference (Roman and Davis, 1994).

Leads V4, V5, and V6 of the precordial lead set were
selected, resulting in a three-channel system. Waveform interval
variations were excluded by using only the QRS complex segment of

the ECG trace. This limits the complexity of the system model and
reduces the number of computations at this early stage of the
research. Two waveform records were excerpted from the CSE
multilead cases: a normal QRS complex and a slightly abnormal QRS
complex, corresponding to cases MOl-011 and MOI-081, respectively,

in the CSE database filename notation. Several consecutive ECG
cardiac cycles for the normal and abnormal cases are presented in
Figure 7-4. Effects of spatial diversity can be investigated in

the future by using non-adjacent leads such as VI, V4, and V6.

Lead Abnormal Normal

V4 
T

V5

V6

Figure 7-4. Selected cardiac cycles of the ECG traces used in the
modeling and discrimination analysis.
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Analysis And Simulation Procedure. The canonical correlations

algorithm was selected for the analysis, using data from the

selected simultaneously-recorded channels (Figure 7-4). For each

channel, ten consecutive realizations of the QRS complex were

selected. A QRS wave trace duration of 0.16 sec, corresponding to

80 data points, was removed from each of the ten cycles. These

realizations included at least ten data points before and after

the QRS complex in order to allow robustness of the covariance

calculation with respect to data segmentation. Each QRS complex

trace was pre-processed by removing the mean and dividing by the

standard deviation of the 80-point sequence. A normalized 80-lag

covariance matrix sequence was estimated for each of the ten

three-channel vector data sequences, and the ten estimates were

averaged to generate an averaged covariance matrix sequence. This

procedure was carried out twice, first for the normal case and

then for the abnormal case.

Multivariate state space models were generated for the three-

channel (precordial leads V4, V5, and V6) normal and abnormal

cases using the respective averaged covariance matrix sequences.

Forty (M=2L=40) covariance matrix lags were used (out of the

available 80 lags), and a sixth-order model was selected for both

conditions (normal and abnormal). The transfer function models

and temporal whitening filter residual sequences obtained are very

similar for each of the three channels. Thus, results are

presented herein only for channel 2 (lead V5).

A scalar state space model was generated for the scalar

covariance sequence for channel 2 (lead V5). This allows direct,

qualitative comparison of the single-channel results with the

selected multichannel results. As in the multichannel case, forty

(M=2L=40) covariance sequence lags were used for the normal QRS

complex condition, and a sixth-order model was selected. For the
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abnormal condition fifty (M =2L =50) covariance sequence lags were

used, and a 14th-order model was selected.

The multichannel and single channel models for the normal and

abnormal cases were used to define the temporal whitening filters.

These filters were used to process 80-point QRS complex traces

representative of the selected cases. Analysis of the

characteristics (sample mean value; sample variance; sample

covariance sequence) of the filtered residuals provides an

indication of the methodology's capability for ECG diagnostics.

Simulation Results. Scalar modeling and discrimination results

are presented first. A Blackman-Tukey (BT) estimate of the power

spectrum computed using the 80-lag average covariance sequence was

adopted as the "true" spectrum for comparison purposes. The

"model" spectrum was obtained by direct evaluation of the

identified model transfer function. Figure 7-5 presents the BT

power spectrum and the identified sihgle-channel model power

spectrum (bold curve) for lead V5 of the normal QRS complex. Note

that the relatively low order model (sixth-order) represents well

the key features in the "true" spectrum. The BT power spectrum

and the identified single-channel model power spectrum (bold

curve) for lead V5 of the abnormal QRS complex are presented in

Figure 7-6. Note that the "true" spectrum for this case has more

features, which accounts for the higher model order. Comparison

of the spectra in Figures 7-5 and 7-6 shows significant

differences. This is expected because the respective ECG traces

differ significantly (see Figure 7-4).

Figures 7-7 through 7-10 present the sample covariance

sequence of the residuals obtained by filtering an 80-point QRS

complex wave from the V5 lead for normal and abnormal conditions.

The scalar whitening filters designed for the null and alternative

hypotheses were used to generate the residuals. These figures
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show that a white (uncorrelated) residual is obtained when the

signal matches the whitening filter (as in Figures 7-7 and 7-9),

and that a colored residual is obtained when the signal and the

whitening filter are mismatched (as in Figures 7-8 and 7-10).

Multichannel modeling results are presented in Figures 7-11

and 7-12. Specifically, Figure 7-11 presents the BT power

spectrum (based on the 80-lag average covariance matrix sequence)

and the multichannel model power spectrum (bold curve) for lead V5

of the normal QRS complex. Note that the model does not fit the

key features in the "true" spectrum as well as in the single-

channel case. The BT power spectrum and the multichannel model

power spectrum (bold curve) for lead V5 of the abnormal QRS

complex are presented in Figure 7-12. Again, in this case the

model fit to the "true" spectrum is not as good as in the single-

channel case. This apparent poor spectral fit of the multichannel

model is discussed in the Comments paragraphs below.

Figures 7-13 through 7-15 present the (2,2) element (which

corresponds to the V5 lead) of the sample covariance matrix

sequence of the vector residuals obtained by multivariate

filtering an 80-point QRS complex vector sequence for the normal

and abnormal conditions. The multichannel temporal whitening

filters designed for the null and alternative hypotheses were used

to generate the residuals. As in the scalar case, these figures

show that a white (uncorrelated) residual is obtained when the

signal matches the whitening filter (Figures 7-13 and 7-15), and

that a colored residual is obtained when the signal and the

whitening filter are mismatched (Figure 7-14).

Comments. The discrimination results presented herein indicate

that both multichannel and single-channel state space models can

be utilized to represent normal and abnormal ECG waveforms

effectively. Additionally, the SSC model-based multichannel
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detection methodology with state-space models (both multichannel

and scalar) can be applied to discriminate between normal and

abnormal ECGs.

Both transfer functions presented for the multichannel model

do not fit the "true" spectra as well as the scalar model transfer

functions. This apparent loss of performance in the multichannel

case is due to the differences in the concept of transfer function

(or transmission) zeros between the multichannel case and the

scalar case. In the scalar case the transmission zeros of the

transfer function are the roots of the polynomial in the numerator

of the transfer function. However, in the multichannel case the

transfer function numerator is a polynomial matrix, and the

transmission zeros of the multichannel system are different from

the roots of the scalar polynomials that constitute the elements

of the numerator polynomial matrix. In the multichannel case the

total matrix polynomial is important in determining the system

response. The transfer function plots shown herein for the

multichannel case are calculated using as zeros the roots of the

scalar polynomials that constitute the elements of the numerator

polynomial matrix, which accounts for the observed performance.

Even though the plots shown do not indicate the true frequency

response, they do provide an approximate indication and it is

instructive to review the responses thus obtained.

Figures 7-7 and 7-9 for the scalar case exhibit residual

whiteness comparable to that observed in Figures 7-13 and 7-15 for

the multichannel case. However, the residual in Figure 7-8 for

the scalar case where the whitening filter and the ECG wave are

mismatched, shows less correlation than the residual for the same

conditions shown in Figure 7-14 for the multichannel case. This

is representative of the performance improvement achievable with

multichannel processing over single-channel processing.
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TRUE AND MODEL SPECTRA FOR NORMAL ECG QRS COMPLEX (LEAD V5)
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Figure 7-5. True and model spectra of the lead V5 normal ECG
(single-channel model) .

TRUE AND MODEL SPECTRA FOR ABNORMAL ECG QRS COMPLEX (LEAD V5)
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Figure 7-6. True and model spectra of the lead V5 abnormal ECG
(single-channel model).
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RESIDUAL AUTO-COVARIANCE FUNCTION
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Figure 7-7. Covariance sequence of residual for normal whitening
filter applied to normal ECG signal (single-channel model).
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Figure 7-8. Covariance sequence of residual for normal whitening
filter applied to abnormal ECG signal (single-channel model).
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RESIDUAL AUTO-COVARIANCE FUNCTION
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Figure 7-9. covariance sequence of residual for abnormal
whit ening filter applied to abnormal ECG signal (single-channel

model).
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Figure 7-10. Covariance sequence of residual for abnormal
whitening filter applied to normal ECG signal (single-channel

model).

102



TRUE AND MODEL SPECTRA FOR NORMAL ECG QRS COMPLEX (LEAD V5)
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Figure 7-11. True and model spectra of the lead V5 normal ECG
(multichannel model).
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Figure 7-12. True and model spectra of the lead V5 abnormal ECG
(multichannel model).
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RESIDUAL AUTO-COVARIANCE FUNCTION
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Figure 7-13. Covariance sequence of residual for normal whitening
filter applied to normal ECG signal (multichannel model).
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Figure 7-14. Covariance sequence of residual for normal whitening
filter applied to abnormal ECG signal (multichannel model).
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RESIDUAL AUTO-COVARIANCE FUNCTION
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Figure 7-15. Covariance sequence of residual for abnormal
whitening filter applied to abnormal ECG signal (multichannel

model).

The whiteness (or lack thereof) of the residual covariance

sequences in Figures 7-7 through 7-10 and 7-13 through 7-15 can be

assessed using the whiteness criterion defined in Section D.3 of

Appendix D. However, simulation-based analyses indicate that

additional criteria are required for robust descrimination of ECG

signals. These issues are addressed in Section 7.4.

Alternative Model Identification Approaches. Most ECG traces in

the CSE database consist of a repeatable, deterministic component

in low-level noise (high SNR), as evidenced in Figure 7-4. This

suggests utilization of modeling and identification algorithms

designed for deterministic signals in low-intensity noise. With

this motivation, SSC investigated the applicability of the Zeiger-

McEwen algorithm (Zeiger and McEwen, 1974) and the deterministic

version of Kung's algorithm (Kung, 1974) to model the QRS segment

of an ECG trace. Simulation-based analyses indicated that both of
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these algorithms generate state-space models that represent the

QRS segments accurately. However, in most cases the state-space

models have several multivariable zeros outside the unit circle

(non-minimum phase), which leads to unstable inverse systems.

Also, the response of the inverse system exhibits behaviour that

is difficult to explain only on the basis of the non-minimum-phase

characteristic. Based on these observations, these alternative

deterministic approaches were not pursued further.

7.4 ECG Diagnosis Methodology

As stated earlier, abnormality detection using ECGs can be

formulated as a multiple hypotheses testing problem with the null

hypothesis representing the normal ECG condition, and one

alternative hypothesis assigned to each abnormality selected for

discrimination. Thus, the SSC model-based detection methodology

presented in Figure 2-1 is a likely candidate for an ECG diagnosis

methodology. SSC analyzed this issue extensively, and concluded

that a model-based methodology does provide a feasible approach

for the diagnosis of abnormal cardiac conditions, although some

modifications to the configuration utilized in the surveillance

radar array application are required.

SSC has defined the model-based methodology presented in

Figure 7-16 to generate multi-lead ECG diagnoses. The methodology

in Figure 7-16 differs from the methodology in Figure 2-1 (as

expanded upon in Sections 3 through 5) in several aspects. First,

parameter identification and filter design is implemented on-line

in the architecture of Figure 2-1, and off-line in the

architecture of Figure 7-16. This difference is important, but

less fundamental than others because off-line parameter

identification is the most likely approach in many applications.

Second, Figure 2-1 implements a binary hypothesis formulation,

whereas Figure 7-16 implements a multiple hypotheses formulation.
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This is a fundamental difference because the multiple hypotheses

problem is more complicated than the binary hypothesis problem (a

summary of multiple hypotheses testing is presented in Appendix

G). Third, as indicated in Figure 7-16, the input ECG trace is

"pre-processed," whereby artificial variations in the data are

removed. Fourth, given the residual sequences, a set of residual

features is calculated in Figure 7-16, instead of a likelihood

ratio as in Figure 2-1. Fifth (and last), the detection decision

in the architecture of Figure 2-1 is implemented as a threshold

comparison, whereas the diagnosis decision in the architecture of

Figure 7-16 is implemented based on several criteria. The issues

involved in the third, fourth, and fifth items are expanded upon

in Sections 7.4.1 and 7.4.2.

Residual

NORMAL Sequence
EGG TrCONDITION

FILTER {t(n IHo)}

Residual
Pre-Processed ABNORMAL Sequence

ECG Trace, CONDITION #1

{_x~n)} FILTER {_•(n.IHM1)} RSDA

Figure7-16. Model-base, m0 STATISTICS NG DIAGNOSTIChitecGNRTO DECISION Digos

F 2Reference
Residual Parameters

._•ABNORMAL /Sequence

CONDITION #M •-
FILTER {&_( IHM)}

Figure 7-16. Model-based, multi-lead ECG diagnosis architecture.

Model Identification Algorithm. Although not apparent upon

comparison of Figures 2-1 and 7-16, one further difference exists

between the ECG diagnosis methodology and the radar detection
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methodology as implemented in this report. Based on extensive

modeling and condition filter design analyses, SSC discovered that

the canonical correlations algorithm leads to better results in

the context of ECG diagnosis than the Van Overschee-De Moor

algorithm. Specifically, the Van Overschee-De Moor algorithm

generates non-minimum-phase condition filters in many cases,

whereas the canonical correlations algorithm generates minimum-

phase condition filters in almost all ECG data cases considered in

this study. This may be due to the fact that the ECG trace has a

repeatable, deterministic component when viewed as a time series

(see, for example, Figure 7-4). The random aspect of ECG traces

is manifested predominantly over distinct realizations (different

individuals; same individual on different days; differences in

placement of the sensors over the body; etc.), although there are

small cycle-to-cycle variations. Thus, the ECG trace can be

viewed as a non-ergodic process. This is problematic to the Van

Overschee-De Moor algorithm, which is applied normally to only one

full cycle (or segment of a cycle) of an ECG trace. A full cycle

of an ECG trace is defined herein as the epoch from the initial

point of one PQRSTU segment (Figure 7-3) to the initial point of

the next PQRSTU segment (thus, a cycle consists of one PQRSTU

segment and a segment of noise floor). In contrast, the canonical

correlations algorithm is applied to an averaged ACS estimate,

where the averaging is implemented either over several cycles in

one ECG trace, or for one cycle over multiple ECG traces, or over

several cycles over multiple ECG traces. This allows for

considerable smoothing, and allows for inclusion of ensemble

statistics. For the Van Overschee-De Moor algorithm, averaging of

the estimated filter parameters does not guarantee minimum-phase

condition filters. Also, averaging of the ECG cycles over one

trace (and/or over multiple traces) prior to processing may lead

to improved results, but remains to be demonstrated. These issues

will be considered in future programs.
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7.4.1 ECG TRACE PRE-PROCESSING

The CSE database is a collection of true ECGs recorded with

typical digital 12-lead recording equipment on actual patients.

As such, the ECG traces in the CSE files exhibit most of the

features that characterize actual ECGs, including random noise, 60

Hz noise (and harmonics), linear trends, cycle-to-cycle amplitude

variations, repetition period variations, and iso-electric

potential level variations. These features complicate the design

of automatic ECG diagnostic processors and equipment, as well as

the diagnosis task itself. The SSC methodology includes a pre-

processing step which precedes the filtering step in Figure 7-16.

Pre-processing is required to extract the PQRSTU segments (or

sub-segments thereof) from the ECG trace, and to remove or modify

the dominant deleterious features of the extracted segments. Pre-

processing is implemented equally for each condition path, and is

an integral part of condition filter design also.

The pre-processing operations discussed herein were developed

for the normal, RBBB, and LBBB files in the CSE database, but it

appears that the same operations are necessary also for all other

files in the database. Furthermore, it is clear that some form of

segmentation and signal conditioning is required for an eventual

ECG diagnosis equipment based on the configuration of Figure 7-16.

SSC carried out several analyses to establish the necessary pre-

processing operations. The analyses focused on three types of

operations: (A) segmentation of the ECG trace into cardiac cycles

(or segments thereof), (B) bias offset (or removal), and (C)

amplitude normalization. These three operations are presented as

a generic block diagram in Figure 7-17, in the order favored by

the results obtained to date. This diagram is generic because the

segment duration, amplitude offset, and amplitude scale factors

are unspecified. Table 7-1 lists the specific pre-processing

procedure applied to the ECG traces processed to generate the
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results presented in Section 7.4.4. The segmentation approach in

Table 7-1 is defined for synchronously-recorded channels, as is

the case in the CSE database. Variations of these three

operations were considered (such as removing the sample mean from

the QRS segment, and scaling the amplitude using the variance),

but the procedure in Table 7-1 prepared the data best for model

identification and discrimination.

ECG Trace,
Lx(n)l TRACE

SEGMENTATION

AMPLITUDE SCALE
OFFSETFACTOR

CALCULATION CALCULATION

Pre-Processed
4 ECG Trace,

.(, {x(n)}

Figure 7-17. ECG trace pre-processing block diagram.

110



ECG TRACE PRE-PROCESSING PROCEDURE

A. TRACE SEGMENTATION

For each cardiac cycle, extract the QRS segment:

1. For each condition, select a channel to which the
other channels are referenced to, and select a
reference feature in the reference channel,
- Normal: First positive-valued peak in lead I
- RBBB: First positive-valued peak in lead V5
- LBBB: First negative-valued peak in lead V3

2. For the reference channel, select the N-point
segment starting at the Lth point preceding the
reference feature (the point which defines the
reference feature becomes the (L+1)th point in the
segment).

3. Select the same initial point for all other channels

of the same condition (all leads are synchronized).

B. AMPLITUDE OFFSET

For each QRS segment of each channel:

1. Select the first five (5) points of the segment and
calculate their average; denote this quantity as b.

2. Subtract the local average, b, from each point of
the QRS segment.

C. AMPLITUDE SCALING

For each QRS segment of each channel:

1. Calculate the sample root-mean-square (RMS) value
for the N-point segment; denote this quantity as S.

2. Divide each point of the QRS segment by s.

Table 7-1. ECG trace pre-processing procedure for methodology
validation analyses.
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With respect to Table 7-1, the segmentation step yields the

QRS segment of each cycle in each channel. For the analyses

presented in Section 7.4.4, the length of the QRS segment is N=

100 points, and location offset values are: Normal, L=35; RBBB, L

=35; and LBBB, L=39. The amplitude offset step sets the iso-

electric potential level to zero, and the amplitude scaling step

normalizes the segment power to unity.

Many of the ECG traces in the CSE database include a linear

trend feature, as exhibited by lead V6 of the normal ECG case in

Figure 7-4. In many cases, however, the trend is negligible

within a single cycle (or portion thereof), and removal is

unnecessary. In future analyses involving the CSE files, a pre-

processing step may be defined to remove linear trends and other

prominent features that can impact modeling and discrimination

performance.

7.4.2 ECG RESIDUAL STATISTICS AND DECISION CRITERIA

Under idealized conditions (the process modeled is a true

random process with a state space representation), discrimination

in a multiple hypotheses problem is accomplished using a

comparative value test applied to the log-likelihood statistic, as

indicated in Appendix G. But state space models for ECG traces

are representation models rather than physical models; thus, it is

reasonable to expect deviations from strict theoretical results.

This is common to all applications involving real data, including

radar systems.

Based on extensive analyses, SSC discovered an important

characteristic of condition filter residual sequences. Namely,

the residual sequence of the condition filter that matches the

input ECG trace may be non-white, but is "more white" (less

correlated) than the residual sequences of the non-matching

112



condition filters. Due to this feature of condition filter
residuals, the log-likelihood statistic /(EiHj) utilized in multiple

hypotheses tests (see Appendix G) is inadequate for robust (>90%

correct) diagnoses of ECG traces, but does provide correct

diagnoses in a majority of the cases. SSC also investigated

utilizing tests of whiteness to implement the diagnostic decision,

since a match between the input trace and the condition filter

should result in a white residual sequence. However, the
threshold crossings statistic Cr(a) defined for the test of

whiteness formulated in Section D.3 also turned out to be

inadequate for robust diagnoses. However, it does provide a good

indication of whiteness (or lack thereof) in most cases.

Other statistics were evaluated in search of a measure that

would lead to robust diagnoses. Such a measure should be a scalar

function of the residual vector sequence in order to simplify

usage and software implementation. A good whiteness measure

should assess relative whiteness also; that is, its value should

be proportional to the degree of correlation in a sequence.

Measures considered in this study include statistics of the scalar

auto-correlation sequences (ACS) of the elements of the residual

vector. One of the best candidate measures considered is the sum
of the value of the circular estimate of the ACS for lags 1

through Mc (with Mc as defined in Appendix E). This is a

reasonable candidate because at all lags (except lag m=O) the

circular ACS of a white sequence is characterized by small, random

(positive and negative) deviations from the value zero. The sum

of such deviations is a small value. That is indeed the case for

the ECG traces where the input data matches the condition filter

type. However, that turned out to be the case also in various

cases where the residual sequence is clearly non-white, but large

positive and negative excursions of the estimated ACS lags almost

canceled each other. These observations indicated that a measure

based on the rectified ACS lag estimates is a better candidate.
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Herein "rectified" denotes that the absolute value operator is

applied to each element of a vector or sequence. For a white

residual sequence, the sum of the rectified ACS lag estimates is a

small value, although approximately twice the value for the un-

rectified case. In contrast, the sum of the rectified ACS lag

estimates for a non-white residual sequence is a large value in

all cases. Large deviations from the zero baseline that cancel in

the un-rectified case, add up in the rectified case. This measure

does provide improved diagnosis capability over the un-rectified

measure, but still less robust than desired.

After extensive analyses, it became clear that it is unlikely

to identify a single measure that will perform with the desired

degree of robustness in this application. Fortunately, it became

clear also that joint consideration of three specific measures can

provide the desired performance. These measures are evaluated

individually, and their decisions combined using the two-out-of-

three criterion. The selected measures are summarized next,

including the formula used to generate the relevant statistic as
well as the associated decision rule. In this context, D(-) denotes

the diagnosis decision (selection of hypothesis) based on

statistic (-), and D denotes the final diagnosis decision, based on

the two-out-of-three criterion applied to the three individual

decisions.

Log-Likelihood (LL) Statistic:

N-i
(7-1) 1(lH)= N n[QH)] +I T(n1Hi) 9-l(Hi)E(nfl~i) i=O, 1,. .. , M

n=O

LL Decision Rule:

(7-2) D(f) = Hi [/(ElHi) = in[1(FHj)1J
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Threshold Crossings (TO) Statistic:

J MC

(7-3a) CrQ(X-,I Hi) = I Imax{ 0, sgn[Vrkk(m)I-tr(CC)]} i= 0,1,..., M
k=1 m=1

(7-3b) 'lr(a) = 2-aF. erfinv[1i- x] = ýN- erfinv[1- (x]

TC Decision Rule:

(7-4) D(C)=Hi € Cr(a,_jHi)=min[Cr(Ox,FIHj)]
i

Rectified ACS Sum (RAS) Statistic:

J M.
(7-5) Sr(-'l~i) , I -.ifrkk(m)l i=O 0 ,, M

k=1 m=1

RAS Decision Rule:

(7-6) D(S)=Ii <:> Sr(•IHi)=min[Sr(AIHj)]

Two-Out-Of-Three Decision Rule:

fH if D(/)=ID(C)=D(S)=Hi or D(/)=D(C)=Hi
(7-7) D = or D(/)=ID(S)=Hi or D(C)=D(S)=Hi

0 if D(I) # 0(C) # D(S)

The notation used in these equations is as defined previously,

and/or in Appendix D. Both the LL and RAS statistics are computed

using only model parameters and the residual sequence. But
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determination of the TO statistic as in Equation (7-3) requires

the threshold parameter, Tr(a), as well as the residual sequence.

This threshold is calculated using the PDF of the estimated ACS,

which is a function of the number of points in the residual

sequence, N (see Appendix D).

The combined decision rule in Equation (7-7) can be modified

to provide an answer different than the null set for the cases

where all three individual decision rules are distinct, 0() • D(O)•

D(S), even though the input ECG trace represents one of the

conditions included in the design. One approach is to select the

decision associated with the most definitive statistic, meaning

the statistic whose value is the farthest from the alternatives,

based on a normalized distance measure. A further modification

consists of comparing the most definitive statistic with an

appropriately-selected threshold. Then, the decision associated

with the most definitive statistic is selected if the statistic is

below threshold, and the null set is selected otherwise. The

second modification allows handling of ECG traces representing a

condition that is not included in the design. These modifications

remain to be evaluated.

7.4.3 ECG DIAGNOSIS METHODOLOGY VALIDATION PROCEDURE

A summary of the validation procedure applied to the ECG

diagnosis methodology is presented in Table 7-2. This approach

was applied to the processing architecture presented in Figure 7-

16 for the case of three-condition diagnostic generation (M=2).

In this architecture the condition filters are designed off-line

using the canonical correlations algorithm, and applied in real

time to multi-lead, sampled ECG traces, represented by the

discrete-time signal vector {x(n)}. Filter residuals are processed

to calculate the LL, TC, and RAS statistics, and these statistics
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are used to establish a diagnostic decision as described in

Section 7.4.2.

METHODOLOGY VALIDATION APPROACH

* CSE ECG database

* Segment of cardiac cycle used (QRS complex)

• Discrimination between three conditions
- Normal condition (NC)
- Right bundle branch block (RBBB)
- Left bundle branch block (LBBB)

"* Three independent ECG leads: I, VI, and V6

"• Data files divided into design and testing sets

"* Fifteen design set files
- NC: {mol-004, mol-008, mol-019, mol-058, mol-060}
- RBBB: {mol-014, mol-033, mol-074, mol-076, mol-123}
- LBBB: {mol-024, mol-046, mol-065, mol-098, mol-107}

"* Fifteen testing set files
- NC: {mo2-007, mo2-009, mo2-011, mo2-012, mo2-016}
- RBBB: {mo2-015, mo2-019, mo2-033, mo2-036, mo2-046}
- LBBB: {mo2-030, mo2-078, mo2-084, mo2-108, mo2-109}

Table 7-2. ECG diagnosis methodology validation approach summary.

With respect to the second item in Table 7-2, an ECG trace

portion consisting of the QRS complex segment of the cardiac cycle

is selected in order to limit the number of data points and the

number of features used in off-line generation of the condition

filters. The order of the resulting filters is lower than it

would be if the full cardiac cycle is used, and the number of

computations (off-line as well as on-line) is lower also.

Methodology validation can be accomplished adequately by

demonstrating discrimination between a limited number of

conditions. In particular, the selected abnormality conditions,

right bundle branch block (RBBB) and left bundle branch block

(LBBB), present a realistic challenge (Ddvila-Romdn, 1994).

Another relevant feature of these two cardiac conduction
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abnormalities is that they can be diagnosed using only three of

the fifteen ECG leads (Wagner, 1994). The normal condition (NC)

is selected also since any diagnosis machine has to handle normal

cases. All of the CSE files used in this procedure have been

inspected and classified by Dr. Ddvila-Roman (1994) according to

standard cardiology practice (Chou, 1986), since the CSE data

files are unlabeled. The CSE database should include a total of

29 RBBB cases, and 14 LBBB cases (Willems, 1994). Other CSE files

will be labeled in the future, as part of further studies.

All the identified ECG traces in each of the three categories

were partitioned randomly into a design set and a testing set. A

reasonable, and adequate, partitioning rule is to assign

approximately the same number of independent traces to each set.

Fifteen data files were assigned to each set, design and testing,

with five cases in each of the three condition categories. The

ECG traces in the design set are used to determine the parameters

of the condition filters in the processor architecture, and the

ECG traces in the testing set are used to establish processor

performance.

In pattern recognition terminology, the architecture in
Figure 7-16 is a classifier which discriminates between M+1

classes (or categories) by assigning a data item (the residual

sequence) to one of M+1 distinct classes. If all the classes can

be grouped naturally into fewer categories, then the classifier

carries out multi-level discrimination. Figure 7-17 presents a

discrimination tree for the NC, RBBB, and LBBB conditions in the
ECG trace diagnostics architecture of Figure 7-16 (with M =2).

Discrimination trees help in the visualization of the

classification objectives and formulation of the performance

evaluation criteria. Notice that two levels of classification can

be defined because the LBBB and RBBB classes can be combined to

define the bundle branch block (BBB) class as a higher-level
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A large database is required in order to attain statistically

significant methodology validation results at the highest

discrimination level (the level with the largest number of

options). Also relevant is the desired resolution precision (one

percent; tenth of a percent; etc.), and the desired accuracy of

the evaluation result. As a first-order indication of the size of

the testing set, several hundred independent ECG traces are

required for each abnormality and for the normal case in order to

evaluate the performance at Level 1 of the classifier in Figure 7-

16 for a measurement resolution of a few percent.

The NC, RBBB, and LBBB data files identified thus far in this

program are insufficient to provide conclusive evaluation results.

However, prudent utilization of this data, as proposed herein,

suffices to establish concept validity and to provide a first-

order assessment of diagnostic accuracy. The size of the design

and testing sets will increase as the truth condition of all the

files in the database is established; this will be helpful in

future analyses.

Classifier performance can be determined with the aid of a

tool referred to as the confusion matrix, which is a scheme for

tabulation of discrimination results. A generic confusion matrix

is presented in Figure 7-19 for the case of three Level 0

categories (Class 1; Class 2; Other), and six Level 1 categories
(Hypotheses H0 through H.). In this confusion matrix the Level 0

and Level 1 category "Other" allows for consideration of unknown

and/or unlabeled inputs to the classifier. In the context of ECG

diagnoses, the category "Other" represents ECG traces for

conditions outside the set of conditions for which the diagnostic

processor is designed.

The confusion matrix is completed as follows. A "zero" is

placed in each empty square in the matrix at the beginning of the
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performance evaluation test. Then a "one" is added to the

appropriate square for each classifier decision. Upon completion

of test runs, the confusion matrix contains a summary of all the

decisions. Specifically, correct decisions are accounted for

along the main diagonal, and incorrect decisions are accounted for

in the off-diagonal elements. Level 1 performance is determined

using the information in all the individual entries, whereas Level

0 performance is determined by grouping the information in the

like-shaded entries.

DECISION
Class 1 Class 2 Other,

Ho Hi H2 H3 H4 H5

H~o
Class I Hi

T R U T H I - - --

Class2 H

H4,

Other, H5 i ii

Figure 7-19. Generic confusion matrix for a two-level, six-
hypotheses discrimination tree.

Given a completed confusion matrix, a set of statistical

parameters referred to herein as performance probabilities are

estimated. Performance probabilities are defined at each level,

and their estimates are calculated using the relative frequency

probability concept (number of outcomes divided by the number of

opportunities). The most important performance probabilities are

defined next, along with the formula for their estimates for two

discrimination levels and M possible hypotheses, corresponding to

Figure 7-18 and the results presented in Section 7.4.4 (M =2).
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Let Z denote the total number of ECG cases used to test the

diagnostics processor, and Zi denote the number of true cases under

hypotheses Hi, for i=O, 1,..., M. Also, let Dili denote the number of

decisions D=Hi when Hj is true, let DC denote the total number of

correct decisions, and let D, denote the total number of incorrect

decisions. Notice that Dilj is the entry in the jth row and ith

column of the confusion matrix, and all decision variables (each
Dili, Dc, and DI) are random. Given these definitions,

M
(7-8) Z= IZi

i=o

M

(7-9) Z =I Dili 0, M
i=o

M

(7-10) Dc = Di

i=Q

M M
(7-11) DI = Y£Dili

i=0 j=0

Probability Of Correct Decision (Level 0):

(7-12) PCD = !P[Correct Decision]

_ Dc

(7-13) PCD =T=-z Dili
i=0

Probability Of Incorrect Decision (Level 0):

(7-14) PID = P[Incorrect Decision]
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(7-15) ID == -X = - M Dili

i=0 j=0
j•I

Probability Of Decision H. When H- Is True (Level 1):

(7-16) Pij = P[Decision Hi When Hi Is True]

(7-17) P. = i=0,1,...,M; j=o,1,...,M
Iii 

z

Probability of Incorrect Decision for Hvyothesis Ho (Level 1):

(7-18) PIDj = P[Incorrect Decision For Hypothesis Hj]

no. of incorrect decisions when Hj is true
(7-19a) PIDj = ZJ = 0, M

(7-9b Dili = 0, 1,. .. , M
(PDj = Z I

i~j

From these definitions it follows that

(7-20) PCD + PID= 1

(7-21) PCD +PD =1

M

(7-22) YPij =1 0, M
i=1
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M

(7-23) 1Pj=1 j=0, 1,..., M

i=0

Generalization of these definitions to more than two levels is

trivial, but cumbersome notation-wise. Notice that the Level 1
Probability for Correct Decision for Hypothesis H, denoted as PCDj,
is the same as the Probability Of Decision Hi When Hj Is True in

Equation (7-16) with i=j. The same follows for the estimate of the

probabilities.

All the outcomes in the evaluation procedure defined herein

are independent because the design set and testing set files are

independent of each other and of the files in the same set, and

because the processing is applied to each case file independently.
Therefore, each set of random variables {Djji= 0, 1, ... , M} is

distributed according to the multinomial distribution
characterized by the integer Z1 (number of opportunities) and the

true (and unknown) performance probabilities {Pj1i = 0,1, ... , M}.

Furthermore, the random variable DC is distributed according to

the binomial distribution with parameters Z (number of

opportunities) and the true performance probability PCD. And

similarly, DI is distributed according to the binomial distribution

with parameters Z and the true performance probability PID. Thus,

the probability of DC correct decisions in Z opportunities is

given as

(7-24) P rrCI= ( Z IDck0F-CD) kl Z-Dc Z! (PcD)DC (P,D)D,
(Dc (Dc)! (ZDc)!

And the probability of D, incorrect decisions in Z opportunities is

given as
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(7.-25) P[D,]= ( I (P'D)DI (1-PID)Z-DI = Z-! (PID)D' (PcD)DC
DI ~ (D,)! (Z- Dl)!

These theoretical relations are useful even though the true
performance probabilities are unknown. First of all, since DC and

DI are binomially-distributed, the estimates in Equations (7-13)

and (7-15) are unbiased, maximum-likelihood estimates of the

respective true probabilities (Hastings and Peacock, 1975). Also,

the binomial PDF can provide indication of the likelihood of the

realized DC (or DI) value. As an example, let Z = 15 and suppose

that the outcome of a test is DC =14. Since the mode of the PDF
for DC satisfies the inequality (Z+l)PCD -1Dmode !(Z+l)PCD

(Hastings and Peacock, 1975), it is more likely that the unknown,
true probability PCD is closer to 0.9 than to 0.7. Similar

considerations are valid also for the multinomially-distributed

variables, but the larger number of variables that are inherently

involved in the multinomial PDF complicates the issue.

7.4.4 ECG DIAGNOSIS METHODOLOGY VALIDATION RESULTS

SSC applied the approach summarized in Table 7-2 and

described in Section 7.4.3 to validate the model-based ECG

diagnosis methodology of Figure 7-16. The conditions for the

analyses are summarized in Table 7-3, and these conditions apply

for both design and testing. As noted in this table, model order

10 was selected for each of the three condition filters. This
model order allows a good fit to the design set QRS segments,

without modeling excessive details. The average (over the three

channels of the three condition filters) residual sequence power

with this model order is 25.1 dB below the input sequence power.

That is, the whitening gain of the condition filters is

approximately -25 dB for the design set files. Further

optimization of model order may be possible, but it is more

appropriate to do so with a larger design set. The condition
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filters were designed off-line using the canonical correlations

algorithm, which operates on the auto-correlation sequence (ACS)

of the ECG trace vector. Forty-five (45) ACS lags are required by

the algorithm (including the lag at m=O), given the selected

value, 22, of the Hankel matrix block row dimension parameter.

The ACS used to design the condition filters is generated as

follows (Table 7-2). First, the biased, time-averaged ACS

estimate (Appendix E) is generated for each of the eight QRS

segments of each ECG trace in the design set. Next, this estimate

is averaged over the eight QRS complexes in each of the five ECG

files in the design set; this is temporal averacring of the ACS.

Finally, the correlation matrices are averaged further over the

five design files; this is ensemble averaging of the ACS. Both

types of averaging are important because ECGs are non-ergodic.

All files in the CSE database are of ten-second duration

(approximately), and have at least eight good cardiac cycles (each

CSE file corresponds to a different patient and/or condition; a

normal cardiac cycle is of approximately one-second duration).

The design criteria described in Appendix D - mean test;

power test; whiteness test (TC measure) - were applied to the

residuals of the three subsets of the design set ECG files. All

three design criteria were met with system order ten for each

condition filter. Additionally, the residual statistical measures

LL, TO, and RAS (Equations (7-1), (7-3), and (7-5)) were

calculated for two different averages of the residual ACS for the

design set cases. In the first average, forty circular, time-

averaged residual ACS estimates are averaged. This form of

averaging utilizes all the available residual estimates for a

given condition, and corresponds to averaging the residual ACS

over time as well as over the ensemble. In the second average,

eight circular, time-averaged ACS estimates corresponding to the

same ECG trace are averaged. This form of averaging involves only

similar residuals.
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CONDITIONS FOR SIMULATION-BASED METHODOLOGY VALIDATION

" ECG leads I, VI, and V6 labeled as channels 1
through 3, respectively.

"* Condition filters designed with system order 10 and
using Hankel matrix block row dimension 22.

"* Eight QRS segments from each of the five independent
cases used for off-line condition filter design with
the canonical correlations algorithm.

Each QRS segment pre-processed as described in Table
7-1 (bias off-set and scaling) prior to being used
for condition filter design or for testing.

"* Each ORS segment has N=100 points.

" Forty-five (45) lags of the design auto-correlation
matrix sequence (for off-line filter design)
obtained by averaging the biased, time-average
correlation matrix sequence estimates of each of the
32 QRS segments.

" Filter residual statistics (LL, TO, and RAS)
calculated for the residual ACS averaged over either
thirty-two or eight circular, time-average ACS
estimates.

Table 7-3. Conditions for simulation-based methodology
validation.

The TC statistic requires the threshold parameter, Tr(L), which

is applied to lags 1 through Mc of the diagonal elements of the

averaged matrix ACS, as discussed in Appendix D. For the QRS

segments considered herein N=100, so that all lags in a circular

estimate of the ACS are approximately Gaussian-distributed. Thus,

the threshold calculation is given by Equation (7-3b), which

indicates that the threshold is a function of the variance of the
2scalar residual sequence under each hypothesis, T., the number of

points in the residual sequence, N, and the significance level of
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the whiteness test, a. A reasonable value for the level of

significance is x= 0.05, and is the value selected for the analyses

reported herein. The system model covariance matrix of the
residual vector under each hypothesis, Q(Hj), is known, so, the

required scalar variances are known (the diagonal elements of
(Hj)) . In general, a different threshold value is required for

each scalar ACS since all the diagonal elements of O(Hj) are

different. However, for the analyses reported herein each scalar

residual sequence is normalized to have unit variance prior to the

generation of the circular ACS estimate. This normalization is2
equivalent to setting C7,=1 for each scalar residual sequence;

consequently, the threshold expression simplifies to (in MATLAB

notation for the inverse of the error function)

(7-26) 'r(a) = erfinv[1 - x]

Upon substitution of the known parameters x and N, the threshold

is calculated as

(7-27) r(a) = 1 erfinv[0.95] = 0.196

This threshold value is used for each of the three scalar

normalized ACSs in design as well as testing. For the parameters

in these simulations, lags 1 through Mc=50 of the circular, time-

average ACS estimate of a zero-mean, unit-variance, scalar white

sequence should exceed the threshold of Equation (7-27) less than

three times, on the average.

The RAS statistic is a function of the scalar ACS (Equation

(7-5)). This statistic is computed herein also using the scalar

ACS estimated for the normalized residual sequence. Given this

constraint, the maximum possible value for this statistic is 50
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(for N = 100, only lags 1 through Mc=50 of the circular, time-

average ACS estimate are unique).

Consider first the statistical measure results for the design

set time- and ensemble-averaged residual ACS, presented in Table

7-4. For each statistical measure, the decision rule is to select

the minimum (Equations (7-2), (7-4), and (7-6)). The decision for

each measure is highlighted in Table 7-4; notice that the three

measures produce the correct decision in all cases. Of course,

the two-out-of-three decision rule also generates the correct

decision in all cases. These results are expected since the

measures in Table 7-4 are generated for residuals of the ECG cases

used to design the condition filters. All three measures provide

good discrimination margin, measured on a percentage basis. The

narrowest discrimination margins are for the LL statistic for the

LBBB design set cases; specifically, 6.8% and 10.0%.

Consider now the statistical measure results for the design

set residual ACS with time-averaging only, which corresponds to

applying the test criteria to each case individually. These

results are presented in Table 7-5, with the decision for each

measure highlighted. Since the measures in Table 7-5 are

generated for residuals of the ECG cases used to design the

condition filters, the three measures produce the correct decision

in all cases, and the two-out-of-three decision rule also

generates the correct decision in all cases. All three measures

provide good discrimination margin, on a percentage basis. The

narrowest margin is 6.4% for the LL statistic for Normal design

set case mOl-019.

In the testing step the testing set cases are pre-processed

according to the procedure in Table 7-1, and filtered with the

whitening filters designed using the design set cases. Then the

statistical measures LL, TO, and RAS are calculated for the
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testing set residual sequences in the same manner as discussed

above for the design set. Real-time processing of ECG traces

would proceed in a similar manner. This approach was carried out,

and the statistical measure results for the testing set residual

ACS with time-averaging only are presented in Table 7-6.
Analogous to Table 7-5, the results in Table 7-6 correspond to

applying the test criteria to each case individually. The rule

decision for each measure is highlighted in Table 7-6, indicating

that each statistical measure produces an incorrect decision in at

least two cases, but two or more measures generate an incorrect

decision in one case only. Therefore, the two-out-of-three

decision rule produces a correct decision in fourteen cases, and

an incorrect decision in one case. These observations are

summarized in the confusion matrix presented in Table 7-7. Blocks

that have the same shading in Table 7-7 represent the grouping of

the test outcomes required for Level 0 performance evaluation.

Performance probabilities for these results are calculated

using the information in Table 7-7. Level 0 probabilities are the

most relevant since these results are based on a small number of

test cases (Z=15). Specifically,

(7-8) 15 DC 14 _

(8CD 15 -=0.93

Z 15

(7-29) PCD = D--= 0.07ID Z 15

(7-30) PCDNC = P[Correct Decision For Normal Condition]

(7-31) 5CDNC DCNC 4 = 0.80
ZNC 5

(7-32) PIDNC = P[Incorrect Decision For Normal Condition]
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S DINC =1 =02
(7-33) PIDNC 1 Z 020

ZNC 5

(7-34) PCDBBB = P[Correct Decision For BBB Condition]

(7-35) CDBBB DCBBB = 10 1.0
ZBBB 10

(7-36) PIDBBB = P[Incorrect Decision For BBB Condition]

7 =DIBBB = 0

) IDBBB ZBBB 10

PCD and PID are the most fundamental probabilities and the ones

estimated most accurately. Based on the inequality for the mode
of the binomial distribution, the test outcome DC =14 is much more

likely if the true (and unknown) probability PCD is in the range

0.90 < PCD < 0.95 than if it is in the range 0.70 < PCD < 0.75. An

analogous statement is true for the test outcome D,.

The results presented in these tables are indicative of the

expected performance for a larger data set assuming that the files
used for design are representative of the universe of ECG traces

(ensemble) for the conditions considered; this should be true for

the CSE database. Nevertheless, an enhanced design for cardiac

conduction abnormality diagnosis based on more independent ECG

traces and further testing using more independent ECG traces is a

desirable next step. A possible variation to the approach is to
design each condition filter for a lead subset specific to that

condition, in contrast to having the same set of leads as inputs

to all filters. The work can be extended to include other cardiac

abnormalities and/or to include as inputs data from other

physiologic sensors operating synchronously with the 12-lead ECG.
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TRUTH CONDITION FILTER

DESIGN NORMAL RBBB LBBB

CASES RAS LL TC RAS LL TC RAS LL TC

NORMAL _,7.7 3 -1 4 0 2 0 13.38 -1,065 6 18.81 960 31

RBBB 21.92 -1,109 29 8. 91 -1 28.20 -750 55

LBBB 21.17 -1,467 25 41.31 -1,417 53 8 2 4

Table 7-4. Statistical measures for the design set time- and
ensemble-averaged residual ACS.

CONDITION FILTER

NORMAL RBBB LBBB

CASE(mSE TRUTH RAS LL TC RAS LL TC RAS LL TC(mol)

004 Normal 10.-'5 4, 1243 "5' 15.84 -752 17 18.39 455 24

008 Normal ý.. 4 6 'r1 472'" 3,' 16.40 -1330 21 22.50 300 34

019 Normal 13 6 3,, r , 3 15.82 -1290 16 17.96 -493 25

058 Normal "A0.44• -1 1W .3 20.18 -413 30 21.68 565 33

060 Normal ,10 181!4402 'ý5 12.37 -1065 7 21.87 960 33

014 RBBB 42.15 -1353 69 •'17.7. 1584 16 46.07 -932 100

033 RBBB 31.25 -898 54 15.85 ,-1397 8 35.33 -228 65

074 RBBB 24.00 -1109 35 '17.'2 7 , u-50 39.10 -750 73

076 RBBB 20.93 -894 36 .11.1.1 -113111 1 27.06 -609 49

123 RBBB 20.72 -898 29 '11. 96•' • 1397' 7 , 21.00 -228 23

024 LBBB 52.36 -1567 105 63.39 -1595 91 3, 1 0, 7•6• 0 '•<8

046 LBBB 24.54 -1496 42 48.75 -1419 76 15.02 . iL 4.

065 LBBB 56.64 -1556 105 68.18 -1575 96 18.5,1 7146 "1 '»8

098 LBBB 29.80 -1467 49 50.12 -1417 79 15'.02'5 :" 5 7

107 LBBB 30.19 253 53 35.17 -120 54 9.2 1 ̀2 2

Table 7-5. Statistical measures for the design set time-averaged
residual ACS.
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CONDITION FILTER

NORMAL RBBB LBBB
CASECASE TRUTH RAS LL TC RAS LL TC RAS LL TC(mo2)

007 Normal 14.5! -1331 1 18.89 - 6 20 19.74 -326 29

009 Normal 12.04 -351 6 11.22 -366 4 18.42 2253 1 9

011 Normal 15.2 -1426 1 1 21.11 23 21.30 -578 30

012 Normal 19. -3 1 21.29 -1226 38 27.48 537 46

016 Normal 15.80 -11• 20.61 -584 30 21.28 1282 30

015 RBBB 37.59 -1008 66 122.2 -299; 40 24.92 -740

019 RBBB 27.50 -1166 41 '15.86 139 1  1. 23.84 -634 37

033 RBBB 30.45 -999 26 16.43" -10117'7 ; 15•!. 22.18 -160 49

036 RBBB 23.29 -1151 34 22.93 <-125'0 31 •22.49 -577 32

046 RBBB 28.29 -1372 45 21 .19,'9 -1490 ! 34 25.23 -960 40

030 LBBB 18.17 -1521 19 45.53 -1478 71 6 7 61 ... 2

078 LBBB 31.36 -1524 54 49.71 -1573 76 •,3j 8 6

084 LBBB 30.98 5-1318 65 48.34 -852 82 -1116

108 LBBB 39.74 -1426 73 47.64 71578, 82 -1577

109 LBBB 31.43 -1574 59 52.84 -1565 79 '0•4• 7 e

Table 7-6. Statistical measures for the testing set time-averaged
residual ACS.

DECISION

NORMAL BBB

NORMAL RBBB LBBB

NORMAL NORMAL

LBBB ..

Table 7-7. ECG diagnosis methodology evaluation confusion matrix.
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8,0 CONCLUSIONS AND RECOMMENDATIONS

The work carried out in this program emphasized the

development and validation of a state space methodology and

algorithm for model-based multichannel detection. Emphasis was

placed in the surveillance radar array application and space/time

processing. Utilization of state space techniques for
multichannel detection in radar systems is one novel aspect of the

work reported here. The state space model class is richer than

the time series model class that is used often in radar system

applications. And, as demonstrated in this work, the state space

model class can be used to represent effectively multichannel

radar signals. Feasibility of the model-based multichannel
methodology for automated ECG diagnostics was demonstrated also.

Another novel aspect of the work is the utilization of the
new parameter identification algorithm developed by Van Overschee

and De Moor (1993). In the process, the algorithm was extended to
the case of complex-valued data (as required for radar systems),

and several enhancements to the algorithm were discovered. Of
particular interest is a new method to compute the QSVD that

offers simpler implementation, improved performance, and less

computations than the published methods. The Van Overschee-De

Moor algorithm uses channel output data directly (as opposed to

output correlation matrices) to estimate model parameters. This
eliminates the large computational burden associated with the

generation of the output correlation matrix sequence, and leads to
reduced numerical precision (dynamic range) requirements.

Furthermore, in a practical environment it may be possible to

start processing the data as it is received. In contrast,

techniques which require the computation of channel output

correlation matrices have a built-in delay because the calculation
of every lag requires availability of all the channel output

sequence.
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The Van Overschee-De Moor algorithm belongs to a class of

techniques referred to as subspace methods. Subspace methods are

based on decomposing the vector space spanned by the channel

outputs into signal and noise subspaces. This decomposition is

carried out with robust numerical techniques such as the SVD and

the QR decomposition. Thus, the algorithm offers numerical and

performance advantages over other techniques.

A hardware-based processor development system (PDS) was

configured and integrated to serve as a testbed for the design and

development of detection and identification methodologies and

algorithms. The PDS consists of a Sun Microsystems' SPARCstation

10 host and a SKY Computers' SKYstation II accelerator, with

FORTRAN 77 and MATLAB software (MATLAB runs only on the

SPARCstation). The PDS is very effective for simulation-based

analyses (single-run cases as well as Monte Carlo analyses) and

for off-line processing of data collected using operational radar

systems. Access to the PDS speeds up algorithm development work

at both SSC (during Phase II) and RL (after delivery upon program

conclusion).

Two sets of software programs were developed to validate the

algorithm and methodology, and to evaluate performance. Extensive

tests were carried out to validate both sets of code. One set of

software programs was developed in the MATLAB simulation

environment. The MATLAB-based software includes an implementation

of the model-based multichannel detection methodology using each

of the three state space model identification algorithms

considered in the program (Van Overschee-De Moor; canonical

correlations; Arun-Kung). Also included in the MATLAB-based

software package is a model of airborne surveillance phased array

radar scenarios that generates simulated data for evaluation of

the model-based multichannel detection methodology as well as
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other space/time processing algorithms. This simulated data

generation capability is described in Volume II of this Final

Report.

The second set of software programs constitute a FORTRAN 77

implementation of the model-based multichannel detection

methodology using the Van Overschee-De Moor state space model

identification algorithm. These programs can be exercised also

using data generated from the MATLAB-based surveillance radar

simulation. A Software Users' Manual for the FORTRAN 77 package

was generated as a separate document (Davis and Roman, 1996), and

provides a detailed description of the FORTRAN 77 package. The

FORTRAN 77 software can run on both Apple and Sun Microsystems

computers.

Simulation-based analyses have demonstrated the feasibility

of the SSC state space approach for modeling the multichannel

clutter return in airborne surveillance phased array radar

systems, and for moving target detection. The innovations-based

detection methodology has demonstrated the capability to

discriminate between target present and target absent hypotheses.

Additionally, the methodology has been applied with equal success

to a reduced-scope ECG diagnostics problem. Specifically,

modeling of and discrimination between normal QRS complexes and

LBBB and RBBB cardiac conduction abnormalities was established,

and the automatic diagnosis of the LBBB and RBBB abnormalities was

demonstrated. Both sets of results were obtained using a subset

of the CSE ECG data base of real ECG traces. These results have

been presented in three medical technology conferences (Roman and

Davis, 1994; Roman et al., 1996a, 1996b).

In the process of completing the work reported here several

areas have been identified for further research and development in

future programs. These areas are summarized below.
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Space/Time Processinq

Significant progress was made in Phase II towards the

development of a processor architecture capable of addressing the

space/time processing problem for surveillance radar arrays.

However, extensive detection performance analyses are required to

establish performance over a wide variety of scenario conditions,

and in relation to the optimum joint-domain method and its

approximations. This is a challenging task because a standard for

comparison is unavailable at the present time.

ECG Diagnostics

The results obtained in Phase II have demonstrated the

feasibility of model-based multichannel methods for ECG

diagnostics. However, additional detailed design and extensive

testing are required in order to achieve a processor configuration

capable of automated, real-time ECG diagnostics. Specifically,

additional abnormalities need to be considered, and a much larger

data base needs to be accessed.

Processor Development System Utilization

The PDS should be exercised further in the development of the

model-based multichannel methodology and its performance

evaluation in the context of surveillance radar array as well as

ECG diagnostics. The PDS is essential also to the investigation

of new areas such as model-based detection methodologies using

two-dimensional models.
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APPENDIX A. PARTIAL QUOTIENT SINGULAR VALUE DECOMPOSITION

The QSVD is a key analytical tool in the Van Overschee-De

Moor identification algorithm, and as such requires an effective

numerical implementation. SSC generated a MATLAB-based software

subroutine implementation the QSVD algorithm proposed by Van

Overschee and De Moor (1991), which, in turn, is a modification of

the approach presented by Paige and Saunders (1981). The SSC QSVD

subroutine was used to compute estimates of the system matrix

parameters as based on the formulas presented in Section 3-1.

However, in the course of running test cases it was discovered

that in many cases the error in the estimate of the eigenvalues of

the system matrix estimated using the combined F formula was

larger than the error obtained using the forward F formula. This

condition was traced to a problem inherent in the QSVD calculation

associated only with the backward F formula. Thus, the QSVD

algorithm proposed by Van Overschee and De Moor had to be set

aside. In the process of addressing this issue SSC discovered a

simpler, more robust approach to calculate the QSVD, as a

modification of the algorithm recommended by Van Overschee and De

Moor.

The SSC QSVD algorithm has several advantages over the Van

Overschee-De Moor QSVD algorithm; specifically, it is simpler to

understand and to program, and it offers improved numerical

accuracy. In some cases, however, one or more columns of one of

the matrix factors must be computed with another algorithm. In

order to reflect that fact, the SSC QSVD algorithm is referred to

herein as a partial QSVD. It turns out that the missing columns

are not required in the implementation of the formulas to estimate

all the system matrix parameters. Thus, the partial QSVD suffices

for all the computations of interest in this report (see Section

3.1).
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A.1 Quotient Singular Value Decomposition

Consider a pair of complex-valued matrices A and B for which

a QSVD is desired, with A dimensioned as mxn and B dimensioned as

pxn. Consider also an (m+p)xn matrix C formed by concatenating A

and B as

(A-i) C=[ ]
B

In the QSVD formulation due to Paige and Saunders (1981) there are

no restrictions on m, n, and p. However, let m+p>n since such

is the case in the context of the Van Overschee-De Moor algorithm.

Let k ! n denote the rank of C; that is, k=rank(C). The SVD of

matrix C is of the form

F c S1 011k,n-k 1H
(A-2) C = UcScV• = [Ucl Uc 2 ] [0 ]n-k,k [0 ]n-k,n-k = cI cl

[O]r,k [O]r,n-k j C2H

here r=m+p-n, and matrix SC has non-zero elements all along its

main diagonal if k = rank(C) = n. Matrices U0c and Vc are both

unitary, and the partitions of U0C, SC, and VC have compatible

dimensions determined by the rank of C. The next step in the QSVD
is to partition the (m+p)xk matrix Uci as follows:

(A-3) Uc 1 = U012

where Uc11 is mxk, and UC1 2 is pxk. Assume now that m < k and p= k.

This occurs always in the computation of the backward F formula,

and is one of the cases that will lead to ambiguous results in
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most software implementations. Carrying out SVDs on matrix UC11
and on matrix UC12 results in

FH_

(A-4) Uc11 = HA = u[ s1  [0m,k-m. ]
L H

(A-5) Uo, 2 = H = VT, W:1

where U and V and WA and WB are unitary matrices. S 1 and T1 are

real-valued, non-negative, diagonal matrices with the diagonal

elements arranged in decreasing order of magnitude,

(A-6a) Si= Sl(i,i) i= 1,2,..., m

(A-6b) 1 Ss1 s2 .. Smn 0

(A-6c) ti= T1(i,i) i= 1,2,..., k

(A-6d) 1 > t1 > t2 ... tk 0

Consider now a re-ordering of the diagonal elements of Ti such that

(A-7) T1(1,1) = tk; T1(2,2) = tk1; . . . ; Tl(k,k) =t

and reverse the order of the columns of V and of WB accordingly.

For the matrices resulting after these manipulations Paige and

Saunders (1981) show that

(A-8) WA = WB = W

140



and that the diagonal elements of S1 and T, satisfy the following

condition:

(A-9) S2 + t2 = 1 i=1,2, k
I i

with Sm+1 = Sm+2 = . = Sk = 0 (these zero-valued elements of S1
correspond with unity-valued elements of T1).

Equation (A-8) is key to the Paige-Saunders QSVD formulation
because it allows substitution of W in the place of WA and WB

into Equations (A-4) and (A-5). It is then simple to show that

the desired QSVD for the matrix pair (A,B) has the form

(A-10) A = USXH

(A-11) B=VTXH

with matrices S, T, and X given as

(A-12) S = [Si [0]m,n-k]

(A-13) T = [T 1  0]p,n-k

(A-14) X=VcIW [01k,n]k
(A-4) X =Vc [0n-k,k I n-k

Notice that matrix X is nonsingular and that it does not have any
particular structure. The real-valued number pairs (si,ti) are the

non-trivial sinqular value pairs of the matrix pair (A,B). If k< n,

there are n-k trivial singular value pairs of the form (0,0).

The source of the QSVD computational problem lies in the way

that SVD routines compute the singular vectors for rectangular
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matrices. Specifically, the singular vectors associated with

zero-valued singular values are not unique, and most SVD routines

select two different sets of null space singular vectors for two

different matrices with the same null space. Additionally, the

sign of the vectors is arbitrary, and small differences in the way

that the calculations are carried out often lead to different

signs for the same singular vectors.

A.2 Partial OSVD Algorithm

Recall that the relation in Equation (A-8) is key to the QSVD

formulation. This relation, however, is an analytic result. Most
software implementations of the QSVD will generate WB 2 to be

different from WA2 (see Equations (A-4) and (A-5)) when m<k and p

= k. This is due to the fact that WA2 spans the null space of

matrix A, and representing the null space in the coordinates of

any basis in that subspace leads to a correct SVD representation

of A. However, for a correct QSVD representation of a matrix pair
(A,B), matrix WA2 must be represented in the same coordinates as

matrix WB2 . Furthermore, the corresponding columns of WA and of

WB must have the same sign. Most SVD numerical implementations

will generate sign differences between the corresponding columns
of WA and of WB even in the cases where m=p=k.

In their paper describing their QSVD formulation, Paige and

Saunders (1981) mentioned that the relation in Equation (A-8) is

not satisfied in some cases. However, based on their remarks it

appears they did not recognize the reason for the problem, nor did

they provide a procedure which avoids it. SSC has identified a

procedure that avoids completely the following two issues: (a)
non-uniqueness of the null-space of WA, and (b) sign differences

between the corresponding columns of WA and WB. The procedure

generates the diagonal elements of T1 in the correct order,

Equation (A-7). Furthermore, a SVD of Uc1 2 is not required, and
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the calculations required in its place are numerically robust.

The steps in the procedure are summarized next for the case of

interest here; namely, for m<k and p=k.

The SSC modifications to the above-defined QSVD algorithm
start after Equation (A-5). In place of an SVD on matrix UC12,

define a new matrix D as

(A-15) D = UC1 2WA

Notice that Equation (A-8) implies

(A-16) D = UC12WA = UC12WB = VT1

Now let di denote the ith column of D,

(A-17) D = [dd2 . dk]

Next the p (= k) diagonal elements of T, are obtained as,

(A-18) ti = Id I p

and the p(= k) columns of V are obtained as,

(A-19a) Vi = p
Idil

(A-19b) V = [v 1 Y2 Mp]

Then matrices S, T, and X are given as in Equations (A-12)-(A-14).

The essence of this modification is to avoid the SVD of an mxk

matrix in Equation (A-5), avoid the re-ordering of the diagonal
elements of TI in Equation (A-7) and the corresponding re-ordering

of the columns of V, and avoid any required sign changes to the
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columns of V (notice that a software or hardware implementation of

the required re-orderings and sign changes is likely to involve

significant calculations). These steps are replaced with the

matrix product in Equation (A-15), the calculation of the norms of

p vectors in Equation (A-18), and the normalization of p vectors
in Equation (A-19a). Notice that since matrix WA is unitary, the

matrix product in Equation (A-15) is numerically stable.

Furthermore, the calculations required in Equations (A-18) and (A-

19a) are numerically stable also.

In the cases where p > k and matrix V is needed directly, the

above procedure generates only the last k columns of V. In such

cases the remaining p - k columns of V can be determined by

calculating the null space of matrix D. It is important to note

that such cases do not arise in the Van Overschee-De Moor

identification algorithm. Indeed, only the product VT is required

to implement the backward F formula, Equation (3-34).
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APPENDIX B. COMBINED SYSTEM MATRIX ESTIMATION FORMULA

The combined F formula, Equation (3-35), provides an improved

estimate of the system matrix in the cases where the duration of

the multichannel Output sequence is short (number of data vectors,
NT, is small). The formula proposed by Van Overschee and De Moor

(1991) is straightforward from a conceptual viewpoint, but

involves a large number of computations. In Phase II SSC

formulated an approach based on Kronecker product algebra to solve

the combined system matrix estimation problem which results in a

simple, closed-form solution, as summarized next.

The combined F formula is the solution to a least-squares

problem formulated using the state propagation equations of both

the forward and backward innovations representation (Van Overschee

and De Moor, 1991). Specifically, the combined least-squares

problem is formulated as

(B-l) Fc = min IZL+1- FZL 12+ IWL+1- FHWL12}

F

where Fc denotes the combined F, matrices ZL and ZL+I are forward
Kalman state matrices, and matrices WL and WL+I are backward

Kalman state matrices (Van Overschee and De Moor, 1991; Romdn and

Davis, 1993a). After some manipulations (including minimization),

the problem in Equation (B-l) can be expressed as

(B-2) FcZ Z + WL.F = + L+

This is the combined F formula proposed by Van Overschee and De

Moor (1991). Equation (B-2) is a Sylvester equation, and in the

general case sophisticated techniques are required to solve it.

However, it turns out that a simple, closed-form solution is

possible.
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Each of the individual terms in Equation (B-2) can be

modified using several equivalences. Van Overschee and De Moor

(1991; 1993) have shown that
(B-3) ZLZH = WLH S

ZLZL A WLW

H(B-4) ZL+lZL = FfSL

(B- 5 ) WLWL+l = SLFb

where Ff is the forward F matrix (Equation (3-33)), Fb is the

backward F matrix (Equation (3-34)), and SL is a square diagonal

matrix with non-negative diagonal elements (Equation (3-18) and

Table 2-1). Substitution of Equations (B-3)-(B-5) into Equation

(B-2) results in

(B-6) FCSL + SLFC= FfSL + SLFb

This equation can be transformed into a simpler form via the
application of Kronecker product notation. Let fijc, fijf, and fijb

denote the (i,j)th element of Fc, Ff, and Fb, respectively. And now

define N2-dimensional vectors column vectors f, ff, and fb by

concatenating the rows of matrices Fc, Ff, and Fb, respectively.

Specifically,

(B-7) fc=[fllc f12c ... flVc f21c ... f2Nc ... fNlc ... fNNcIT

T

(B-8) ff= [fllf f12f ... flNf f21f ... f2Nf ... f Nlf ... fNNf]T

(B-9) fb= [lb f12b ... fNb f21b f2Nb fNlb fNNbT
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Then consider the following N 2xN2 block diagonal matrices defined

using Kronecker product notation (Pease, 1965),

• ON ON-
(B-10) INXSL ON SL ""ON

ON ON ... 0 N.

SIN ON " ON

(B-il)N S1N . ON

-N ON SNIN

where IN is the NxN identity matrix, ON is an NxN matrix of zeros,

X denotes the Kronecker product, and Si denotes the ith diagonal

element of the diagonal matrix SL. Based on these definitions it

is trivial to show that the following correspondences are valid:

(B-12) F (.)SL €[IN X SL~f.

(B-13) SLF (.) €= SL X IN~f.

where (.) denotes c, f, or b. Then, it follows that Equation (B-6)

is equivalent to the following expression,

(B-14) {IN X SL]+[SL x 'IN]}c = [IN X SL]Iff + ISL X IN]fb

Notice that the N 2xN2 matrix [IN X SL] + I SL X IN] is block diagonal,

with ith block element SL + SiIN. Each block element SL + SiIN is

itself a block diagonal matrix with jth element Sj +Si. Using

identical index assignments for each of the two factors on the

right-hand-side of Equation (B-14) leads to

(B-15a) (Sj + Si) fijc = sjfijc + sifijb i = 1, 2,..., N; j = 1, 2,..., N
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s ifijf + sifijb i 1 2 ; j 1 2
(B-15b) f j i j i=1,2...,N; j= 1,2, ... ,N

which is the desired solution to Equation (B-2). This formula has

interesting features. Specifically, in the case where the number
of multichannel output vectors is large (fijf =fijb), the solution is fijc
=fijf=fijb, as expected. Also, in the special case where all the

diagonal elements of SL are equal (Si =Sj for all i and j), the

solution is fijc=(fijf+fijb)/2' the algebraic average of the forward and

backward solutions, as dictated by intuition.
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APPENDIX C. SPATIAL FILTERING AND THE LDU DECOMPOSITION

The LDU decomposition is a powerful analysis tool which

admits efficient numerical implementation. Furthermore, this

decomposition is related to optimal linear filtering. Given a
square (JxJ), Hermitian matrix Q, the LDU decomposition of 92 is

defined as

(C-1) Q = LDLH

where L is a JxJ complex-valued, lower-triangular matrix with

unity-valued elements along the main diagonal, and D is a JxJ

diagonal matrix with real-valued, non-negative diagonal entries.
In this factorization L2 can be rank-deficient, and the rank

deficiency of K is manifested with a corresponding number of zeros

along the diagonal of D. Matrix L, however, is full rank with

unity-valued determinant (the determinant of a diagonal matrix is

equal to the product of the diagonal entries). Therrien (1983)
has shown that the rows of matrix L-1 correspond to the

coefficients (in reverse order) of the optimum linear prediction
filters of orders 0 through J-1, and the diagonal elements of Di

are the corresponding prediction error variances. In the context
of interest herein, 2 is the covariance matrix of the temporal

innovations vector, and L-1 is a linear transformation applied to
the temporal innovations in order to diagonalize Q. Thus, the LDU

decomposition is equivalent to linear spatial filtering which

spatially whitens the temporal innovations.

Consider the temporal innovations sequence, {((n)}, under

either hypothesis, and apply a linear transformation TH to obtain a
temporally- and spatially-whitened process {y(n)} (Equation (4-2)).

Specifically,

(C-2) y(n) = THE(n) = L-l•(n)
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It follows from Equations (C-i) and (C-2) that the covariance

matrix of v(n) is diagonal,

(C-3) I = EN(n) yH(n)] = THQT = L-'Q(Ll')H = D

The equivalence between spatial whitening and the diagonalization
of Q is demonstrated next.

Let aij denote the ith complex-valued coefficient of a jth-order

optimal linear prediction filter (the asterisk denotes complex

conjugation). Recall that linear prediction filters have the

structure of an auto-regressive (AR) system. In terms of these
coefficients, the structure of L-I is (Therrien, 1983)

1 0 0 ... 0 0

all 1 0 ... 0 0

(C-4) a22 a12 0 0

aj.2,j.2 aj_3,J_2  aj.4,j_2  1 0

aj-1,J-1 aj-2,J- 1  aj-3,J- 1  a..1  1

Given this association, the jth row of Equation (C-2) is expressed

as,

j-1 S* ^*
(C-5) v = e + aij--15i = -" j J

i=1

where the caret (A) over denotes the minimum variance estimate

of ej. From Equation (C-5), Vj can be interpreted as the error in
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the linear prediction of cj from {E.,..., 61}. Also, the elements of

the instantaneous (fixed n) vector v can be viewed as a finite-

length sequence {Vl,...,Vj}. A sequence generated in such a manner

is white. Thus, the linear transformation in Equation (C-2) is a

spatial whitening filter.

Consider, in particular, the last (Jth) row of L-I. The

elements in this row are the coefficients of the highest-order
linear predictor that can be defined for a sequence of length J.

Therefore, these elements can be viewed as the J spatial weights

that remove the residual spatial correlation from the temporal

innovations. With this interpretation, the frequency response of

these weights provides the spatial cancelation pattern of the

spatial filter. This important point is explored further below.

The transfer function of a scalar AR system is an all-pole

function, and the inverse of an all-pole AR system is an all-zero

moving-average (MA) system. AR and MA time series models are

causal and causally-invertible; thus, their associated state space

models are innovations representations in the sense of Section

2.5. In both systems the set of coefficients is the same, but the

manner in which the equations are expressed differs. Equation (C-

5) represents an MA system (Appendix G). And if the summation in

Equation (C-5) is transferred to the other side of the equal sign,

then an AR system is obtained (Appendix G),

j-1
(C-6) = - aij-1-i + vj

i=1

In order to determine the transfer function of the system in

Equation (C-5) using the standard notation for MA systems

(Appendix G), consider the case for j=J and let
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(C-7a) boj.1= 1

(C-7b) bi=j.1 ai,j.1 i= 1, J-1

Now Equation (C-5) for j=J can be expressed as

J-1
(C-8) V = bi,j ls

i=0

Since the variables in Equation (C-8) are functions of a discrete

parameter (the integer-valued index i), the z-transform is the

appropriate tool for determination of the transfer function.
Application of the z-transform to Equation (C-8) results in the

expression

J-1
(C-9) N (z) = , -1 Ej (z) = Bj (z) Ej (z)

i=O

here z denotes the transform variable, and Ej(z) and Nj(z) are the z-

transforms of the sequences {I,..., Ej} and {Vl,.. .,vj}, respectively.

Additionally, Bj(z) has been defined implicitly as

J-1
(C-lO) Bj(z) = _ z1

i=0

The transfer function for this system is obtained directly from

Equation (C-9) as the following scalar function,

(C-ll) TMA(z) = Nj(Z) = Bj(z)

where the subscript MA is used to denote that Equation (C-8) is a

moving-average system.
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Given the transfer function TMA(Z), the frequency response is

obtained by substituting z = exp(jws) = exp(j21ffs) in Equation (C-Il) to

obtain (the subscript S in the frequency variables is used to

denote that these are spatial frequencies)

J-1 *

(C-12) TMA(fs) = B (f.) = £ bk e, 2 - kf1
k=O

The summation in Equation (C-12) is the discrete Fourier transform

(DFT) of the coefficients {bk,J 1 k=0,...,J-1} defined in Equation (C-

7). Therefore, the DFT of these coefficients is the spatial

frequency response (beam pattern) of the set of spatial weights

that whiten in space the temporal innovations. Zero-padding

should be used to calculate the DFT in order to obtain sufficient

detail in the spatial frequency domain.

153



APPENDIX D. HYPOTHESIS FILTER DESIGN

The design of each hypothesis filter is an iterative process

which requires determination of the goodness of each intermediate

filter design. Such determination must be carried out using

measures of goodness that are robust and relevant. A key aspect

of the SSC model-based detection methodology is the implementation

of the detection decision using the hypothesis filter residuals.

Thus, the approach adopted herein to establish the goodness of a

filter design is based on examination of the characteristics of

the filter residuals. The discussion is presented for the case of

complex-valued data since the relevant modifications for the real-

valued data case are straightforward.

Some aspects of the approach described in this appendix can

be used also as criteria for detection decisions in cases where

the dual-hypothesis log-likelihood ratio test of Section 5.0 is

inappropriate. One such case is the ECG diagnosis application

discussed in Section 7.0.

Consider the output of a hypothesis filter in the design step

of the dual-hypothesis case; that is, the N-point residual

sequence {&(nIHi)1 where i=0,1. When the channel output sequence

condition matches the filter design condition, the residual vector

sequence is characterized as follows:

S 1N(O,i2(Hi)): Gaussian-distributed with mean zero and

covariance matrix D(Hi);

* circular: independent real and imaginary components with

equal variance; and

* white.

Of course, the circular feature is relevant only for complex-

valued residuals. This set of characteristics suggests a residual

evaluation procedure that consists of:

(a) a zero-mean test (based on Student's t distribution);
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(b) a power test (based on Snedecor's F distribution); and

(c) a whiteness test (based on the scaled SL distribution

for small N and on the Gaussian distribution for large

N).

For analytical simplicity, each of these tests is applied

independently. Also, all three tests are applied to each scalar

element of the residual vector individually.

Given the type of tests discussed in this appendix, it is

appropriate to introduce several notational simplifications.

First, a scalar residual process is assumed; this avoids having to

introduce a subscript to denote a representative scalar element of
the residual vector. Second, the hypothesis argument Hi is

dropped; this is appropriate because the testing criteria are

based on the condition that the hypothesis and the data are

matched. Third, the tests are presented for complex-valued data;

corresponding tests for real-valued data are similar and can be

obtained by inspection of the complex-valued case results.

Fourth, the true mean, variance, and auto-correlation sequence

(ACS) of the complex-valued, scalar, stationary, white residual
process {()(n)=n)+ j si(n)} are defined as:

(D-la) RE = E[£(n)] 0

(D-lb) l gr = j= E[Cr(n)] 0

(D-lc) i= S{} = E[ 1i(n)] = 0

(D-2a) G=� E[{s(n) - g.} {s(n) - j} ] E[Is(n) - gI 2 ] = E[Is(n)12 ]

2
(D-2b) G2 E[{sen _2=E(n)] =eF-E 2
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2C2
(D-2b) a 2 = E[{si(n)- gji(n)12] = E[ 2 (n)] = E

ei i 2

(D-3) r,(m) = E[s(n) s*(n-m)]

For a zero-mean process (as considered herein), a2 =r These

true process parameters are referred to throughout this appendix.

It is important to note that the true process parameters listed in

Equations (D-1)-(D-3) are the system model parameters, and thus

are known in the context of hypothesis filter design as well as in

the context of detection decisions.

D.1 Zero-Mean Test

The sample mean for a finite-length sequence {s(n) In=0,= ,...,N-

1} is the time-average estimate of the mean of the process; that

is,

N-1

(D-4)

n=o

Now denote the real and imaginary parts of the sample mean as

(D-5a) Ar = 910C)

(D-5b) ji = S{A•il

respectively. The sample mean is Gaussian-distributed with mean

equal to the true mean,

(D-6) 9A =0

and variance given as

156



2.2

where G2 is the variance of the residual process, as defined in

Equation (D-2). The mean and variance of the real and imaginary

parts of the sample mean are:

(D-8a) 9r = E[er] = •r = 0

(D-8b) Ei = E ]= = 0

2

(D-9a) r=E[(A 9 = )2-N
jir 1 er r I 2N

2

where ger and Ji denote the real and imaginary parts, respectively,

of the true process mean, as defined in Equation (D-1).

It is well known that the statistical inference method of

statistics can be applied to test a real-valued sample mean with a

two-sided t-test (see, for example, Frieden [1983]). Since the

data is complex-valued, each component (real and imaginary) of the

sample mean is tested independently. The test on the mean is

discussed herein for the real component only since the approach

and formulas are identical for the imaginary component. In the

statistical inference method as applied to the sample mean, two

hypotheses are formulated: (a) a null hypothesis representing the
condition that the sample mean Ar arises from a population with

process mean g-r= 0 ; and (b) an alternative hypothesis representing

the condition that the sample mean kr arises from a population

with process mean ger•O. That is,
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HYPOTHESES FOR TEST ON THE MEAN:

(D-10a) NULL: lar -= lr 0

(D-10b) ALTERNATIVE: Ilr =ur 0

It is important to note that in cases where the true mean value is

unknown, a test value is used in place of the unknown process

mean. The two-sided test on the mean for the hypotheses (D-10) is

(D-11) IJIEr < Tg(0)

•tr=0

where c 9 (a) is a real-valued, positive scalar threshold for the two-

sided test on the mean at a significance level (the significance

level in a statistical test is the probability of false alarm in

detection theory). The sample mean threshold is determined as

(D-12) r((X) tS F ()+ 9r N E t( C)
ýN-i_ _ -

where '•t(o) is a real-valued, positive scalar threshold for the two-

sided t-test at a significance level, and SEr is defined as

N-1 N-1

(D-13) Ser2= -N1 • [9{Fi(R)}_ r] =N 1 [r(n)_kr]2

n=0 n=O

2

Notice that S~r is a biased estimate of the variance of the real

part of the residual, 91{((n)} (the unbiased estimate of the

variance has (N-I)-I in place of N-1 as the multiplicative factor).
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The two-sided t-test threshold is the upper integration limit

which satisfies the following integral equation.,

I(a)

(D-14) 1-a=l-PFA = P[ItIlttcL)]=2 fJPT(tN-1) dt

0

where PFA denotes the "probability of false alarm", P[-] denotes the

probability of event [*], variable t is t-distributed with N-i
degrees-of-freedom, and PT(t,N-1) is the PDF of the t-distribution

with N-i degrees-of-freedom. Variable t is related to the sample

mean according to

(D-15) t= NN-_-I r r = NjN-j-I Pier
S~r Ser

and the PDF of the t-distribution with N-i degrees-of-freedom is

(Hastings and Peacock, 1975)

(D-16) PT(t,N-) N 1-+ t2 -N - 5 - N N>1
S(N-1) -" N ) 2

where F[-] denotes the gamma function. The t distribution (as

defined herein as a function of the number of data points in the

sequence, N) has zero mean for all admissible values of N, and

variance

(D-17) 2 N-1 N>3t N-3

For N =2 and N =3 the variance is undefined, even though the PDF

is defined. As N increases, the t distribution approximates the
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standard Gaussian distribution, N(0,1); in fact, for N>30 the fit

is very good.

The t-test threshold, 't(c), is calculated numerically for a

specified value of a using Equation (D-14). First the integral is

evaluated for an initial value of Vt(c) as its upper limit, and the

result is compared to X. If the computed value is more than a,

then the threshold value is increased and the integral is

evaluated again using the new upper limit. If the computed value

is less than X, then the threshold value is decreased and the

integral is evaluated again using the new upper limit. This

process is repeated until the computed integral value is within a

pre-set tolerance of a (a good value for the tolerance constant is

10-8). Both thresholds, Tt(c) and T (c), are expressed herein as a

function of c to emphasize their dependence on the significance

level parameter. The t-test threshold can be calculated also

using the complement of Equation (D-14); that is, with the

integral evaluated from Tt(a) to +c. However, Equation (D-14) is

simpler to implement numerically.

D.2 Power Test

The three most common ACS estimators are presented in

Appendix E. Each estimator has distinct statistical features and

leads to different results when utilized for model identification

and other problems. However, in all three cases the sample auto-

correlation at lag 0 for a finite-length sequence {s(n) In = 0,1, ... ,N-

1} is the unbiased time-average estimate of the power of the

process; that is,

1 N-iN-(D-18) Fe(0) = -•- (n) E*(n) = "-•--
N N

n=O n=O
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Each term IE(n)12 in the summation is exponentially-distributed, and

the sum of N exponentially-distributed random variables is Erlang-

distributed with shape parameter N (the Erlang distribution is a

special case of the gamma distribution). Thus, the sample power

is real-valued, and is Erlang-distributed with mean equal to the

true power,

(D-19) = (O)=E[F(O)]= r(O) = E

and variance given as (Michels, 1992a; 1992b)

(D-20) G2(0) = E[{=J()_ rJ(0)12 ] 4E

where a. is the standard deviation of the residual process, as

defined in Equation (D-2). A multiplication factor transforms the
Erlang-distributed variable rE(0) into the random variable X2 which

is distributed as chi-squared with 2N degrees-of-freedom;

specifically,

(D-21) X2 2N i(0)

The chi-squared distribution with 2N degrees-of-freedom is denoted
compactly as X2(2N). The mean of the X2(2N) distribution is 2N, and

the variance is 4N.

Statistical inference can be applied to test the sample power

with a threshold-based test. In the statistical inference method

as applied to the sample power, two hypotheses are formulated: (1)

a null hypothesis representing the condition that the sample power
F,(O) arises from a population with process power r,(O); and (b) an

alternative hypothesis representing the condition that the sample
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power r•(O) arises from a population with. process power distinct

from re(0). That is,

HYPOTHESES FOR TEST ON THE POWER:

(D-22a) NULL: ()= re(0)

(D-22b) ALTERNATIVE: r •(0) r,(0)

The null hypothesis can be tested with a two-sided X2 -test.

However, such a test is difficult to implement because the X2 PDF

is asymmetric, which complicates the iterative procedure to

calculate the threshold. This difficulty is avoided by utilizing

a conditional application of the one-sided F-test, which is a test

to determine the equality of two variances (see, for example,

Frieden [1983]). The approach is as follows. First define a

random variable f as:

rE(0) if Condition A: F(O) ( r(0)

rJ(O)
(D-23) { r,(0) if Condition B: F8(0) < r,(0)

When Condition A is true, f is F-distributed with 2N and oc

degrees-of-freedom, which is denoted as F(2N,oo) . Whereas when

Condition B is true, f is distributed as F(o,2N). This allows

application of a one-sided test on the power ratio f for the

hypotheses (D-22) of the form

ys(O)•re(O)

(D-24) f < " f(00

F (0)=r (0)
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where Tf(c) is a real-valued, positive scalar threshold for the one-

sided F-test at a significance level. Notice that both Conditions

A and B are handled with the same test. This is due to the

reciprocal symmetry of the F distribution. The sample power ratio

threshold is determined as

X if Condition A: F(0) Ž r,(O)
2N

(D-2 5) tf(a) 2N
( )2N if Condition B: J(0) < r,(O)

where T 2(a) is a real-valued, positive scalar threshold for the

one-sided X2-test at c significance level. The one-sided X2-test

threshold for use in Equation (D-25) is the upper integration

limit which satisfies an integral equation corresponding to the

condition that is true for the sample power value to be tested.

Specifically,

(D-26a) Condition A: 1-x = 1-PFA = 0p [ 2 • ý X 2(a)j f pc(c,2N) dc

0

*T 2 (a)

(D-26b) Condition B: a= PFA = p[0X X2 • 2(a)]= f Pc(C,2N) do
0

where variable X2 is X2-distributed with 2N degrees-of-freedom, and

pc(c,2N) is the PDF of the X2 -distribution with 2N degrees-of-

freedom (the dummy variable c is used to represent the X2 random

variable). Equation (D-21) defines the relation between the

sample power and the X2 variable. The PDF of the X2 -distribution

with 2N degrees-of-freedom is (Hastings and Peacock, 1975)
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(D-27) pc(c,2N) 1 cNl e-/2 0 Co 0; NŽl
2 N F[N]

where, as before, F[.] denotes the gamma function. The mean of the
X2 distribution with 2N degrees-of-freedom (as defined herein as a

function of the number of data points in the sequence, N) is 2N,

and the variance is 4N for all admissible values of N. As N

increases, the X2 distribution approximates the Gaussian

distribution with mean [4N-1]112 and unit variance, N([4N-1]1/ 2 ,1); in

fact, for N> 15 (more than 30 degrees-of-freedom) the fit is very

good.

Equation (D-25) follows from the relationship satisfied by
the random variables f and X2 ; namely,

2 if Condition A: F(O) Ž re(O)2N
(D-28) f =

2N if Condition B: Fr(O) < r,(O)

This relation, in turn, follows from Equations (D-2a), (D-3), (D-

21), and (D-23). It is important to note that Equations (D-25)

and (D-28) are valid only for the cases where one of the two

degrees-of-freedom parameters of the F distribution is infinite

(corresponding to a known power variable). Such is the case
herein with the variable re(O) used in the power ratio f.

The X2-test threshold, T 2(c), is calculated numerically for a

specified value of a via Equation (D-26) using the approach

outlined in Section D.1 for the t-test threshold calculation. As

for the t-test, the formulation based on integration from zero to

the threshold value (Equation (D-26)) is preferred over the
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formulation where the integration limits are the threshold value

and infinity.

An equivalent test can be defined on the sample variance

instead of the sample power, and the approach is analogous. The

power test is selected herein because generation of the sample

variance requires more computations.

D.3 Auto-Correlation Seauence Whiteness Test

A whiteness test that is applied to the estimated lags can be

configured for ACS estimates determined using any one of the three

ACS estimators presented in Appendix E. However, the circular ACS

estimator is selected herein for two main reasons. First, the

circular estimator is ideally-suited for a finite-length white
noise sequence. This is due to the pairwise independence of all

the elements in a finite-length white noise sequence, which

insures that substitution of the elements at the begining of the

sequence in place of unavailable elements at the end of the

sequence is in accordance with the structure of the true ACS.

Second, the PDF of the circular estimator is the same at all lags,

which allows for a single threshold test to be defined for all

lags. In contrast, the PDF of the biased and unbiased estimators

is different for each lag because the number of data points used
in the estimate at each lag decreases as the lag index increases

(see Appendix E).

In general, for complex-valued data the estimated circular
ACS {Fe(m)1 is complex-valued also at lags m#0 (with exception of

lag m = N/2 for N even, which is real-valued for all data

realizations). In the approach established herein the whiteness

test is applied independently to the real and imaginary components

of the ACS. An alternative approach is to define a whiteness test

for the magnitude or the magnitude-squared of the ACS. Such a
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test requires knowledge of the PDF of the magnitude or of the

magnitude-squared of each lag of the ACS, both of which are

unknown to the authors for the case where N is small-valued. For

large-valued N, the PDF of the magnitude-squared of each lag of

the ACS approximates the exponential PDF.

Two cases are considered herein separately as a function of

data sequence length, N. In cases where N assumes a small value

the exact PDF of each ACS lag is used to establish the test,

whereas the Gaussian PDF approximation is used in cases where N

assumes large values. Software-based analyses indicate that N =50

is a good value to define the boundary between the two cases. In

all cases in Sections D.3.1 and D.3.2 below, r(m) is used to denote

either the real or the imaginary component of the complex-valued,
circular estimate of the scalar residual ACS. That is, r(m)=?,r(m)

or F(m) = ri?(m), where i,(m) = irer(m) + j ?,i(m). Besides simplifying the

notation, this emphasizes the fact that the statistical test

defined herein is the same for both ACS components (real and

imaginary). The only difference between the two applications of

the test is that for even-valued N, at lag m=N12 the imaginary

component estimate is always zero, and the variance of the real

component is twice the value of the variance of the real component

in other lags. This implies that at lag m = N2 when N is even, a

different threshold is calculated for the real component, and no

threshold is required for the imaginary component.

In both cases considered herein the whiteness test is applied

to the subset of the principal lags which excludes the zeroth lag,

since lag m=O is tested separately (Section (D.2). Specifically,

the real (or imaginary) component of the circular ACS estimate,

{r(m)Im=1,2,...,Mc}, with Mc as defined in Equation (E-7), is

tested for whiteness. For a white residual, the mean and variance

of the real (or imaginary) component r(m) are (Section E.1)
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(D-29) t(m)= 0 1 !m • MC

._4 real or imaginary component; 1•< m_< Mc; N odd
2N real or imaginary component; 1• m • MC -1; N even

(723M) 4E(D-30) a E real component; m = Mc; N even
N

0 imaginary component; m = Mc; N even

These two equations follow from Equations (E-19b) and (E-20),

respectively, together with the circular property of the residual
sequence (circularity accounts for the factor 2 in the denominator

of the first condition in Equation (D-30)).

Statistical inference also allows definition of a threshold-
based test for whiteness. The formulation and form of the test is
common to both cases (small N; large N), and only the PDF type and

the resulting threshold value varies between the cases. Thus, the

common parts of the approach are presented next. For the context

herein, two hypotheses are formulated: (1) a null hypothesis

representing the condition that the real (or imaginary) component
of the residual ACS lag m arises from a population with true ACS

lag r(m); and (2) an alternative hypothesis representing the

condition that the real (or imaginary) component of the residual
ACS lag m arises from a population with true ACS lag distinct from

r(m). That is,

HYPOTHESES FOR TEST OF WHITENESS:

(D-31a) NULL: i(m) =r(m) 1 • M:5 Mc

(D-31b) ALTERNATIVE: i(m) • r(m) 1 • m • Mc
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The null hypothesis can be tested with a two-sided test, and the

test is applied at each lag index m=1,2,... ,Mc. A two-sided test

applies because the PDFs corresponding to the two cases considered

herein have mean equal to zero and are symmetric with respect to

the mean. The two-sided test of whiteness for the hypotheses (D-

31) is implemented in two parts. In the first part, the ACS

estimate at each lag is compared with the two-sided threshold for
the test of whiteness at a significance level, which is denoted as

Tr(a). Threshold ¶r(a) is a real-valued, positive scalar. The

threshold comparison is of the form

F(m)•r(m)

(D-32) IF(m)l r r((X) 1 :ý m ! Mc

f(m)=r(m)

and is applied for m = 1, 2, ... , Mc. Let Cr(a) denote the number of

instances that the threshold is exceeded by all the elements of

the sequence {r(m) I m=1,2,...,Mc}; that is,

MC

(D-33) Cr(a) = Emax{ 0, sgn[Ir(m)'-tr(a)]}

m=1

where the max{-,-} operator selects the maximum of its arguments,

and the sgn[.] operator is defined herein as

(D-34) sgn[a] 1

Sometimes the sgn[a] operator is defined to assume the value 0 when
a=0. Then the second, and final, part of the whiteness test is

implemented as
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{r(m)}¢ { r(m)}

(D-35) 0() round[aXMc ]

{P(m)}= {r(m)}

where round[-] is the round-off operator applied to the non-negative

scalar aMc. Notice that Mc is a positive-valued integer, but a is

bounded by zero and unity. Equation (D-35) states that the ACS
estimate is non-white with significance level a if the number of

times that the estimated ACS lags exceed the value of the two-

sided threshold is larger than the expected number of threshold

crossings, and is white otherwise. This part of the test involves

an approximation error for parameter value combinations that are
affected by the quantization inherent in the count Cr(a) as well as

in the round-off operator. For example, if Mc = 50 and a= 0.1, then

round[aMc] = round[5] = 5, whereas if Mc = 33 and a = 0.1, then round[aMc] =

round[3.3]= 3. In the cases where quantization error is present, the

test is more accurate in the ensemble sense.

The two-sided whiteness threshold is the upper integration

limit which satisfies the following integral equation,

Tr (a)

(D-36) 1-c= I-PFA = P[I (m)l 2 fp A() di
0

where PFA denotes the "probability of false alarm", P[-] denotes the

probability of event [-], variable r is distributed according to
either the scaled SL or the Gaussian distribution, and pA(r) is the

appropriate distribution PDF (as defined in either Section D.3.1

or D.3.2). The scaled SL distribution (where SL stands for "sum

of Laplace-distributed random variables") is the distribution of

the real and imaginary components of the circular ACS lags (see

Appendix F). Equation (D-36) follows from the fact that both
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types of PDF considered herein have mean equal to zero and are

symmetric with respect to the mean.

D.3.1 CIRCULAR ACS ESTIMATE FOR SMALL VALUES OF N

Consider the cases where the duration of the residual
sequence is N < 50. As indicated in Appendix F, both the real

component and the imaginary component of each circular lag (except

lag 0) follow a scaled SL distribution. Furthermore, the

parameters of the scaled SL PDF are identical for both components

(real and imaginary) of all lags, except for lag m =N/2 when N is

even-valued. The relevant PDFs for the two conditions that can

arise are given next (Appendix F).

PDF for real or imaginary component of ACS lag m = 1, 2.... M, for N odd, or ACS

lag m = 1.2. M.-1 for N even:

(D-37)N N1(2N-2-k)! 2 
2'N'? k-ep 2

(D-37) P = 2 2N-2 (NN-i)! (2 k! (N-1k) k -22k exp- - -----IGL k=0 a

-00__ r <oo

PDF for real component of lag m = M= N/2 for N even:

(D3)p N N 2(N-2-k)! Nk. 2k1 INk (x N(D-38) P 2 N((N/2)-l)! aY k! ((N/2)-1-k)! a k 22 l

-oo < r<oo

Both PDFs are scaled SL PDFs, but with different parameters.

However, in both cases the associated parameter a of Equation (F-

49) has the same value; namely,
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(D-39) a 2= a>072

The fact that the PDF is of the same type for both conditions

simplifies the statistical testing approach by requiring only one

threshold (two thresholds when N is even-valued).

The threshold for the scaled SL-test is calculated
numerically for a specified value of a using Equation (D-36)

following the approach outlined in Section D.1 for the t-test

threshold calculation. As for the t-test, the formulation based

on integration from zero to the threshold value is preferred over

the formulation where the integration limits are the threshold

value and infinity.

D.3.2 CIRCULAR ACS ESTIMATE FOR LARGE VALUES OF N

Consider now the cases where the duration of the residual
sequence is N Ž50. As the value of N increases the distribution

of both the real and the imaginary components of the circular ACS

estimate approximates the Gaussian distribution for all lags.

This follows from the central limit theorem. Furthermore,

simulation-based analyses indicate that the scaled SL PDF
approximates the Gaussian PDF very well (even in the tails) for NŽ

50. Thus, it is assumed herein that both the real component and

the imaginary component of each circular lag (except lag 0) follow

the Gaussian distribution for N Ž!50. And, given Equations (D-29)

and (D-30), the parameters of the Gaussian PDF are identical for
both components (real and imaginary) of all lags, except for lag m

= N/2 when N is even-valued. The relevant Gaussian PDFs for the

two conditions that can arise are given next.
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PDF for real or imaginary component of ACS lag m = 1. 2.... M for N odd, or ACS

lag m = 1.2 ..... Mc-1 for N even:

(D-40) P = exp - -ooN Foo

PDF for real component of lag m = M= N/2 for N even:

(D-41) P(F) = 2 exp(_ - 4 F2

R -2 7c G 2ac

Both PDFs are zero-mean Gaussian, but with different variance.

The fact that the PDF is of the same type for both conditions

simplifies the statistical testing approach by requiring only one

threshold (two thresholds when N is even-valued).

The threshold for the Gaussian-test is calculated numerically

for a specified value of a using Equation (D-36) following the

approach outlined in Section D.1 for the t-test threshold

calculation. As for the t-test, the formulation based on

integration from zero to the threshold value is preferred over the

formulation where the integration limits are the threshold value

and infinity. In particular for the Gaussian case, the error

function erf and its inverse erfinv in MATLAB can be used to carry

out the calculations, provided an appropriate transformation is

applied first. Consider first the expression involved in the

threshold calculation, Equation (D-36), for the condition

represented by the form of the Gaussian PDF in Equation (D-40),

(D-42) 1 - t= 2 24() F expa 41d

0
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and now define a dummy variable t as

(D-43) t = _

Substitution of this transformation into Equation (D-42) results

in

(D-44a) 1-J = 2 exp[- 2]dt

0

(D-44b) 'T = [ r(a)
GE

where the upper limit of integration, T, is also a dummy variable.

MATLAB's error function ea is defined as

(D-45) erf[T] = -exp[t2]dt

0

Comparison of Equations (D-44) and (D-45) leads to the following

relation between x and Tr(a),

(D-46) erfi 42 r(a)1 = 1-a

Equation (D-46) can be solved for ¶r(a) as a function of (x using the

inverse error function erfinv in MATLAB. Doing so results in

(D-47) T r(a) = C2- T erfinv[1 - (] = a erfinv[1 - a]
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This is the desired result for the first condition, with PDF as in

Equation (D-40).

Consider now the expression involved in the threshold

calculation, Equation (D-36), for the condition represented by the

form of the Gaussian PDF in Equation (D-41),

(D3-48) 1 - cc=2 f pý(F) dF: = C/- G2 expl •2c; dF

00

Following the same steps as for Equation (D-42) leads to the

corresponding threshold for the second condition,

(D-49) "rO ,[ 32" a. erf inv[1 - u.] = erfinv[1 - a]
r CN

As a specific example, for a 5% significance level (a=0.05) and

unity standard deviation (cy. = 1) , tr(c) = • erinv[0.95] = 1.96.
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APPENDIX E. AUTO-CORRELATION SEQUENCE ESTIMATORS

Accurate estimates of the ACS for a random sequence are

required hypothesis filter design (Appendix D), identification of

the state space model parameters using the canonical correlations
method (Section 7.3), and detection decision criteria for some

applications (Section 7.3). The most common ACS estimators are of
the time-average type, since they can be implemented when a single

realization is available. Such a procedure implies that the

random process under consideration is ergodic.

The three most common time-average ACS estimators are

summarized herein; namely, the circular, biased, and unbiased.

Each estimator has distinct statistical features when utilized in

specific contexts. In fact, the unbiased ACS estimator leads to

undesirable results in the three contexts mentioned above, and is

presented herein for completeness only.

In this report, ACS estimators are required for the channel
output vector sequence as well as for the residual vector sequence

and/or its scalar components. However, the estimators are
presented herein for the channel output vector sequence only since

all other cases are handled with a simple change of notation.

Thus, consider a finite-duration realization of the complex-valued
channel output vector process, {x(In = 0, 1,...,N-1).

E.1 Circular ACS Estimator

For this estimator it is convenient to define an infinite-
duration sequence {R(n)f)r(n)+j'i(n)} as a periodic extension of the

finite-duration sequence {x(nln=0,1,...,N-1)}. Specifically, the

desired periodic extension is of the form
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[= x(n) 0<n<N-1

(E-l) (n)
x(n mod[N]) elsewhere

In Equation (F-I) the expression n mod[N] represents "n modulo N,"

and is evaluated as follows. Let the integer n be represented as

(E-2) n = n1 + n2 N

with nI and n2 integers selected such that

(E-3) 0• n1 < N-1

(E-4) -- < n2 <

Then,

(E-5) n mod[N] =n

Notice that an integer pair (nl,n 2) always exist for any specified

integer n.

Given the infinite-duration sequence {R(n)}, the principal

(unique-valued) lags of the circular ACS estimate of {X(n) In=0, 1,...
,N-1)} are defined as

N-i
(E-6a) kxx(m) =-N (n)_H(n- m) m=0, Mc

n=o

N-1
(E-6b) Rxx(m) = -ZT ([_r(n)_•(n - m) + _.(n) RT(n - m)]

n=O

+ _i(n)_T(n - m) -_Xr(n)_xT(n- m)) m=0, 1,..., MC
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(E-6c) Rxx(m) = ^H (N-m) M M +1,..., N-1

F N N even
2

(E-7) Mc =
N -1 N odd2

For an N-point data sequence, the largest lag that can be

generated without repetition is N-i. Circular ACS lags Mc+ 1
through N - 1 are determined from lags 0 through Mc via the

conjugate symmetry relations in Equation (E-6c). Estimates for

negative-valued lags are determined using the well-known conjugate

relation,

(E-8) xx(_m) HR(m) Vm

In general, the principal lags of the circular ACS estimate of a

complex-valued data sequence are complex-valued, except for m=0.

A further exception occurs for lag m = N/2 in the cases where the

number of data points is even-valued. In such cases lag m =N/2 of

the ACS is real-valued also and can be determined as

FN_

(E-9a) (N2)= x(n)H(n+N/2)

N
-- 1
2(E-9b) IAxx(N /2) = '2' _. [ Xr(n) xH(n + (N /2)) + xi(n) xH(n + (N /2))]

n=O
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In Equation (E-9) notice that X(.) appears in the summation, instead

of 3Z(-); this is a result of the simplification made to Equation

(E-6) for the special case m=N/2 with N even. Equations (E-6)

and (E-9) are equivalent.

An alternative expression for the circular ACS estimator can
be derived by recognizing that _(n-m) in Equation (E-6a) is equal

to x(n-m+N) for lags m = 1, 2, ... , N-1 and n < m; that is,

(E-10) xR(n -m) = x((n-m) modN]) =x(n-m+N) m= 1,2,..., N-l; n<m

Substitution of this equality into Equation (E-6a) results in

(E-l + 1- Nm-N1
xXX(M)=+[Yx(n)xH(n-m+N) + x(n)xH(n-m) 1 N-1

-n=O n=m

with lag m =0 determined as

N-i

(E-12) (O) = (n)XH(n)
n=O

Equations (E-11) and (E-12) are convenient for determination of

the mean and variance of the circular ACS estimator. And Equation

(E-9) is obtained also from Equation (E-1l).

Using Equation (E-11) the mean matrix of the circular ACS
estimator at lags m •0 is obtained as

(E-13a) Mc(m) = E[lxx(m)] = -1-[(N- m) Rxx(m) + m R"x(N- m)] 1 • m<• N-1

SmmH
(E-13b) M(m)= m RXx(m) + Rxx(N-m) 1 < m _ N-1
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and the mean matrix at lag m =0 is obtained using Equation (E-12),

(E-14) MC(0) = Rxx(0)

The bias error matrix at lags m #0, denoted as Bc(m), is defined as

(E-15) B0(m) = Rxx(m)- MCm) M ) [Rx(m) - R H(N -in)] 1 • m:5 N-i

and for lag m=0,

(E-16) Bc(O) = Rxx(0) - Mc(0) = [0]

In general, the bias error is non-zero at lags 1 _<m_<N-1 for the

circular ACS estimator. Notice also that the bias error at each

lag is a function of the lag index as well as the lag value at two

lags. The variance matrix of the circular ACS estimator at lags M

=0, 1 .... N-i is defined as

(E-17a) I2(m) = E[{txx(m) - Mc(m)} {xx(m) - MC(m)}] 0• mn• N-i

(E-17b) 2(m) = E[A xxm) H(m)] - M0(m) MH(m) 0• m < N-1

Another important estimator performance measure is the mean-square

error matrix, which is defined as

(E-18a) Sg(m)=E Rxx(m)-Rxx(m)}Rxx(m)-Rxx(m)}H1 0• im< N-1

(E-18b) S (m) = Rxx(m) Rxx(m) - Mc(m) Rx(m) - Rxx(m) MH(m) + E[R(m) RH(m)]

0• im< N-1
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(E-18c) S2(m) = y2(m) + Bc(m)B"(m) 0:m• N-1

In the general case, the variance matrix and the mean-square error

matrix are complicated expressions. However, for the specific

case of a white scalar sequence, which is the case of interest

herein, the mean, variance, bias error, and mean-square error

attain a simple form, as summarized next.

White Scalar Sequence Only:

(E-19a) %(O) = rXx(0) = ax

(E-19b) 0(m) = 0 1• m • N-i

(E-20) U2(m) = r~x(0) -ax4 0•< m < N-1SC - -

(E-21) bc(m) = 0 0 ! m • N-1

2~ ~ 4M y M
(E-22) s() = •m+b (m)=CF2(M)- - xx (0)- 0-•- 0 m:!ýN-1

C C C C N N

Thus, for an uncorrelated sequence the bias error is zero at all

lags, and the mean-square error is the same at all lags.

The circular ACS estimator is ideally-suited for statistical

tests of whiteness for finite-duration sequences, as described in

Appendix D. However, for contexts where the ACS of a colored

(non-white) process is required, such as model identification, the

circular estimator can introduce significant bias and mean-square

errors to the ACS. Only for the case of an uncorrelated sequence

does the extended sequence exhibit the same statistical properties

as the original finite-duration sequence.
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E.2 Biased ACS Estimator

The biased estimator for the mth ACS lag of the finite-

duration sequence {x(n)In=0,l,...,N-l} is defined as

N-iI _.,xý(n)xýHn- )m 01..N1
(E-23a) X()=(-m)m=0N1

n=m

1 N-1
(E-23b) xx(m) = 1 _ ([Xr(n) xT(n - m) + xi(n) xT(n - m)]

n=m

j [xI(n) x(n- m)- Xr(n) x(n - m)]) m=O, 1,...,

For an N-point data sequence, the largest lag that can be

generated without repetition is N-i. Estimates for negative-valued

lags are determined using the well-known conjugate relation,

(E-24) A(_M) = Rxx(m) Vm

The mth lag in Equation (E-23) has N-m terms in the summation, but

the normalizing factor is N for all lags. This drives the

envelope of the biased ACS estimate to exhibit monotonically-

decreasing behaviour as m increases. Such a feature is desirable

because the envelope of the ACS of the output of a stationary
system (with system matrix F stable) is monotonically decreasing.

However, this feature is the reason for the "biased" qualification

attached to this estimator (see Equation (E-26) below).

The mean matrix of the biased ACS estimator is determined

using Equation (E-23), which leads to

N-rn Rx(m) 1• Rx~)Om -

(E-25) MB(m) =E[Rxx(m)] = N R - -mn)-R(m) O!m•N-1
N N
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and the bias error matrix at all principal lags is obtained as

(E-26) BB(m) = Rxx(m) - MW(m) = R.X(m) 0•m•N-1

Notice that this estimator is unbiased only for lag m=0, just

like the circular ACS estimator.

The variance matrix and the mean-square error matrix of the

biased ACS estimator are defined as in Section E.I. As for the

circular ACS estimator, in the general case the variance matrix

and the mean-square error matrix are complicated expressions.

However, for the specific case of a white scalar sequence, which

is the case of interest herein, the mean, variance, bias error,

and mean-square error attain the simple form given next.

White Scalar Seauence Only:

(E-27a) 2B(0 ) = r,(0) =

(E-27b) 9B(m)= 0 1 • m • N-1

(E-28) BN (m)=NN -( JNm- 0: m ý N-1

(E-29) bB(m) = 0 0•ý m • N-1

(E-30) sBin =B Bm+b B•B() - N )- 0• m! •N-1

Thus, for an uncorrelated sequence the bias error is zero at all

lags, and the mean-square error decreases as the lag index, m,

increases.
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Utilization of the biased ACS estimator in model parameter

estimation, adaptive filter design, spectrum estimation, and other

such contexts leads to satisfactory algorithm performance in cases

where the circular and the unbiased ACS estimators fail. This

includes both the radar surveillance and the ECG diagnostics

applications discussed in this report (Sections 6.0 and 7.0).

E.3 Unbiased ACS Estimator

The unbiased estimator for the mth ACS lag of the finite-

duration sequence {X(n)In=0,1,...,N-l} is defined as

1 N-1N-rnR • m ( ) N --'-m --2.• (n)2ýH(n-m ) m 0 ,1 . ., N-1(E-31a) RXM

n=m

N-1

(_.,1b)rN-rn(n - m) + xi(n) xT(n - m)]
(E-3 ib) RXX(m) = - b rn r I

n=m

+j [x.(n)xT(n-m)-Xr(n)xT(n-m)]) m=O, 1,..., N-1

As before, the largest lag that can be generated without

repetition is N-i. Also, estimates for negative-valued lags are

determined using the well-known conjugate relation,

(E-32) Rx(-m) H (M) M

The Mth lag in Equation (E-31) has N-m terms in the summation, and

the normalizing factor is N-m for all lags. This forces the error

bias to be equal to zero for all lags (see Equation (E-34) below),

thus justifying the "unbiased" qualification to this estimator.

However, the behaviour of the estimated lags at the larger index

values (m close to N-i) has a large variance. Due to this large

variance the unbiased ACS estimator is useless in most contexts.
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The mean matrix of the unbiased ACS estimator is determined

using Equation (E-31), which leads to

(E-33) Mu(m) = E[{xx(m)] = Rxx(m) 0< m•< N-1

and the bias error matrix at all principal lags is obtained as

(E-34) Bu(m) = Rxx(m)- Mu(m) = [0] 0•< m 5 N-1

As expected, this estimator has zero bias error at all lags m =0.

The variance matrix and the mean-square error matrix of the

unbiased ACS estimator are defined as in Section E.1. As for the

previous ACS estimators, in the general case the variance matrix

and the mean-square error matrix are complicated expressions.

However, for the specific case of a white scalar sequence, the

mean, variance, bias error, and mean-square error attain the

simple form given next.

White Scalar Sequence Only:

(E-35a) gU(O) = rxx(0) =ax

(E-35b) gu(m) 0 1 <m<N-1

2 4

(E-36) CY2 (m)=(m+l+ r~x(0) =(m+1) CF. 0• m < N-1U' ) N N

(E-37) bu(m) 0 0•< m < N-1

(E-38) 2U = b +(M = G()= (M 1)C; 0•5m•N-1
2(in) (72)M) 2m 2{m (i )

N
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Thus, for an uncorrelated sequence the bias error is zero at all

lags, and the mean-square error increases as the lag index, m,

increases.

The scalar uncorrelated case exemplifies the large mean-

square error that makes the unbiased ACS estimator useless in most

contexts. In fact, it is included in this appendix only for

completeness, since the unbiased ACS estimator has performed

unacceptably in the two applications of interest in this program,

radar array surveillance and ECG diagnostics.
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APPENDIX F. RANDOM VARIABLE TRANSFORMATIONS

In general, the mth lag (for m= 1,2,..., Mc) of the circular

estimator of the ACS of a finite-length, complex-valued, circular

(with independent, identically-distributed real and imaginary

components), Gaussian-distributed, scalar, zero-mean, white
sequence e(n)In = 0,,...,N-1} is a complex-valued random variable

(such a scalar sequence represents one element of the residual

vector sequence). More specifically, the circular estimate of the

mth lag is a sum of N terms of the form (for simplicity, the scale

factor 1/N is omitted)

(F-l) s(n) s*(n-m) = [,r(n) sr(n-m) + Ei(n) £1(n-m)] + j [si(n) Pr(n-m) - Sr(n) fi(n-m)]

Thus, the real (imaginary) component of each lag is a random

variable which is the sum of N terms, and each term is sum

(difference) of the product of two independent, identically-

distributed, zero-mean, Gaussian random variables. A special

condition is true for lag m = N/2 when N is even-valued (see

Appendix E). In such a case lag m = N/2 is always real-valued,

independent of the given data, and is determined as the sum of N/2

terms of the form (for simplicity, a scale factor 2/N is omitted)

(F-2) 91[E(n) s*(n+N/2)] = [,r(n) £r(n+N/2) + si(n) si(n+N/2)]

From Equation (F-2), the real component of lag N/2 is a random

variable which is the sum of N/2 terms, where each term is sum of

the product of two independent, identically-distributed, zero-

mean, Gaussian random variables.

In this appendix the PDF of the mth lag of the circular ACS

estimator for a scalar data sequence is derived as the PDF of the

random variable resulting from the transformations on Gaussian
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random variables outlined above. The approach presented herein is

based on recent analyses by Rangaswamy and Michels (1996).

A different notation is adopted in this appendix for
simplicity and generality. Let Ui, for i=1,2, denote two real-

valued, independent, random variables, both distributed as 9N(0,c).

These random variable are transformed by a series of operations to

obtain the desired PDF results.

F.1 Product of Two Independent, Gaussian-Distributed

Random Variables

Define a real-valued random variable Z as the product of the

two Gaussian-distributed variables U, and U2 ,

(F-3) Z = U1 U2  -< <Z c

The mean and variance of z are

(F-4) z= E[z] = E[u 1 U2] = E[ul] E[u21 = 0

(F-5) z2 =E[(z - gz)2] = E[Z2] = E[ u2 2 ]=E[u2] E[U2] = 2 Y4

The PDF of Z is obtained next using the transformation of variables

method (see, for example, Beckmann [1967]). In accordance with

this method, define an auxiliary random variable U as

(F-6) U = U2  -cc <U U!

Variables z and U have a joint two-dimensional PDF, denoted as

pzu(Z,U), and the PDF of Z is obtained as a marginal PDF, by

integrating pzu(z,U) over the allowable range of values for U. That,

is,
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(F-7) PZ(z) = fpzu(Zu) du -o _ z_

In turn, the joint PDF Pzu(Z,U) is of the form

(F-8) Pzu(ZU) = Pu1u2 (U1(Z,U),U2(Z,U))I (Z',U)I --o<Z!00 _00 _U 0

where the parallel vertical bars (I) are used to denote the

absolute value of the parameter inside the bars. From Equations

(F-3) and (F-6),

(F-9) U I(Z'U) = U, = U = U

(F-10) U2(Z,U) = U

and the Jacobian that appears in Equation (F-8) is determined as

oul oul 1 z

(F-) (UlU2) DUZ U U2 1
O(ZU) a U2  aU2  0 1 U

az au

where the parallel vertical bars (I) denote the determinant of the

matrix enclosed within the bars (parallel vertical bars are

standard notation for the determinant of a matrix as well as for
absolute value). Since U, and U2 are Gaussian-distributed and

independent, their two-dimensional PDF is

(F-12) PUuU2(UlU 2 ) 2 expI 2 _<oo; -- 5<U2<0
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It follows from Equation (F-7) and Equations (F-8) through (F-12)

that

(F-13a) Pz(Z) Z efexx p 2P c U du -< z:c

2 1 [ 2 T-Ii

(F-13b) pz(Z 272 2fexp 222 exP -2 du -- 5 Z
27T i exp- 2a 2 U

0

Equation (F-13b) follows from (F-13a) because the integrand in (F-

13a) is an even function of U. In order to evaluate the integral

in Equation (F-13b) it is convenient to introduce a transformation

on the integration variable, U. Let C denote a dummy variable

defined as

(F-14) C=U 2

It follows from Equation (F-12) that

(F-15) -du= 1 dc
u 2c

Substitution of these equivalences into Equation (F-13b) leads to

(F-16) Pz(Z) 2 exp [ z2 J exp 2 d - -Z

0
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This final expression is evaluated by referring to integral no. 9
on page 340 of (Gradshteyn and Ryzhik, 1980), which results in

(F-17) pZ(Z)- = Ou 01 K O[ u Z ]= 1 O[z

where K0 [.] denotes the modified Bessel function of the second kind
of order zero, and cz is the standard deviation of Z, as defined in

Equation (F-5). The PDF for the product of two identically-
distributed Gaussian random variables given in Equation (F-17) is
similar to the PDF of the K distribution. Thus, it is referred to
herein as the special K distribution.

The characteristic function of Z, denoted herein as Oz(0o), is

defined as

(F-18a) Oz(co) = E[eJ(Oz] = feJQwz pz(z) dz -<0) < •o

(F-18b) Oz(CO) = f [cos((0z) + j sin((oz)] pz(z) dz -00.< 0) < cc

(F-18c) Oz(0) = fcos(coz) pz(z) dz + j fsin((oz) pz(z) dz -oo <<oo

(F-18d) J((0) = fcos(coz) Pz(Z) dz =2 J cos( 0z) pz(z) dz -oo< 0_ o
-o 0

(F-18e) @Z(O))= 4Icos(0)z) K 0[ -dz -00<0 () •00>

0
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As indicated in Equation (F-18d), ,(o)) is real-valued because the

integrand of the integral in the imaginary part is an odd function

of Z, which integrates to zero over the real line. In contrast,

the integrand of the integral in the real part is an even function

of z, which implies that the integral of the real part can be

evaluated as twice the integral over the positive real line. The

integral in Equation (F-18e) is evaluated by referring to integral

no. 6 on page 731 of (Gradshteyn and Ryzhik, 1980), which results

in

1 1

(F-19) z z 1 2+ 2I)-2 00 (0 <00O Z O )1 )z 1 z

~2 + (Y2 2 Z G~

This result is built-upon several times in the remainder of this

appendix. Notice that Oz(() is an even function of o, which

implies that 0,() is symmetric with respect to the origin of the (0

axis.

F.2 Sum of Two Independent, Special K-Distributed Random

Variables

Consider now two independent, zero-mean, special K-
distributed random variables ZI and Z2  with identical

distributions, and define a real-valued random variable V as

(F-20) v=z 1 +z 2  -00• V <00

The mean and variance of V are

(F-21) g=E[v]=E[z +z2]=E[zl]+EIz2]=0
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(F-22) a 2 = E[(v - pv)2] = E[v 2] = E[Z- + 2zlZ2 + Z = E[2] + E[z4 22; =2a4

The PDF of V is obtained next using the characteristic function of

z, and z2 , as determined above. For independent random variables

the characteristic function of their sum is equal to the product

of the two individual characteristic functions; that is,

(F-23) v(O) = OZ1((O) 'PZ2(() [Oz(0))] 2  -Co < 0,) 00

It follows that

I

(F-24) ((0) 2 1 =2 j+H2 J -2 2-22

az•

a2

(F-24b) 2v(()) = (,2 a 2 -00 _<0 ) < 00

(F-24c) a2  2 1 14
OV Z GU

with a > 0. Parameter a is introduced herein for notational

simplicity. The PDF of V is the Fourier transform of the

characteristic function scaled by the factor (27)41; that is,

11 0i e-JV v

(F-25) Pv(v) = -v((]= - e--- i ov(c) dm - 5< v_ •0

This integral can be evaluated to obtain the PDF of V. However, it

turns out that ov(co) is the characteristic function of the zero-mean

Laplace (or two-sided exponential) distribution, which is of the

form (Cooper and McGillem, 1971)
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___ I a -alv,
(F-26) Pv(V) = exp--l Ivi =a-e -0<V5oo

2av (V 2

where the parallel bars (1o1) denote the absolute value. This is

the PDF of the real part of the product C(n)e*(n-m) presented in

Equation (F-i). And this is also the PDF of the (unscaled) real

component of lag m = N/2 of the circular ACS estimator when N is

even, which is presented in Equation (F-2).

F.3 Difference of Two Independent, Special K-Distributed

Random Variables

As in the preceding section, consider two independent,
special K-distributed random variables Z, and Z2 with identical

distributions, and define a real-valued random variable s as

(F-27) S=ZlZ2 - S <

The mean and variance of S are equal to those of V,

(F-28) g= E[s] = E[z 1 - z 2] = E[zl] - E[z2] = 0

(F-29 cr 2 E[(s - [Lv)2] = E[s2] = E[z 2_ 2zlZ2+ z] 2 E[z 2] + E[z 2 2a = 2 az4c(F-29) •s

And the PDF of S is obtained next using the characteristic function
of z, and z2 , as before. For two independent random variables, the

characteristic function of their difference is determined as

(F-3 0) Os(o) = E[e#ws] = E[eji(z''z2)] = E[ei(zl] E[ejOz2] -] (0 <c

Consider the two factors on the right-most equivalence. Each of

these factors is of the form
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(F-31) E[eJwzl] = - zl(w) = z(())

(F-32) E[eij(Oz2] = {E[eJWOz2]}* = 0Z (0))= OC) = P(z(o)

where the last equality is due to the fact that oz(o)) is a real-

valued, symmetric function. It follows that

(F-33) Os(CO) = Oz((O) Oz((O) = [Oz(O))]2 -00 < (0 o<

This result is identical to the characteristic function for the

sum of two independent, special K-distributed random variables,

Ov(co) in Equation (F-23). Thus, the characteristic function of s is

1
a+ 1 ((1 +z 1 1 2s (C02 s 2 -1 0<0:ý0

=F-4a +SCO _--= -o 2 G0 2 G G2

(0 2 = Z •
(F-34a) •s( 2+ 1 (0212 O22

a2

(F-34b) Os(CO) = 02 +a 2  
- 0_ _

(F-34c) a2=-=2 1 1

2 -_--7- "
as Cz Ou

and the PDF of S is given as( lae-alsi
(F-35) Ps(S)=- eXp -- V2Isl a =-e -oo<soO

As before, the scale parameter a is positive-valued, a>0. Notice

that V and S are both Laplace-distributed with identical

distributions (both have mean zero, and as =av).
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Equation (F-35) is the PDF of the imaginary part of the
product c(n)e*(n-m) in Equation (F-i). Thus, the real and imaginary

part of each term of the form c(n)c*(n-M) are both Laplace-

distributed, with identical distribution parameters. This is an

important result because it allows identical treatment for the

real and imaginary components of the estimated ACS lags.

F.4 Sum of N Independent, Laplace-Distributed Random

Variables

Consider a set of N independent, zero-mean, Laplace-
distributed random variables {V1 , V2 1 ... , VN) with identical

distributions. Notice that a set of Laplace-distributed variables
{S1 , S2, ... ,SN} representing the difference of two special K random

variables can be selected instead, and the results thus obtained

will be identical. Therefore, the results presented below are

valid for that case also. Now define a real-valued random

variable y as

(F-36) Y=Vl +V 2 +...+VN -=O<y<oo

The mean and variance of y are

(F-37) j = E[y] = E[v1 + v2 +. + VN] = E[v] + E[v2] +. .. + E[VN] = 0

(F-38a) G = E[(y - py)2] = E[y2] =E[v2] + E[v 2 ] +' .. + E[v2]

(F-38b) Cy = N u=2NcG2=2NaJ

The PDF of y is obtained next using the characteristic function of
the N Laplace-distributed variables {Vi}. The characteristic

function of the sum of N independent random variables is equal to

the product of the individual characteristic functions. For the
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case herein of identically-distributed random variables {viIi= 1,...,

N}, the result is

N

(F-39a) ,y(CO) = J70vi(o) = [Ov((O)]N -0o < co(_< oo
i=:1

Sa2 IN a2N
(F-39b) OY(CO) 1 2- = ---2+a2)N -00:< CO(<

(F-39c) a 2 = 2N 2 1 1
2 "- _=2_'• = ---- = "-(y

G y (TV z U

The expression for parameter a is repeated herein for convenience,

with an additional equivalence in terms of ay, which follows from

Equation (F-38b).

The PDF of y is the Fourier transform of the characteristic

function scaled by the factor (27c) 1 ; that is,

(F-40a) PY(Y) = 2- 24(O)] f fe1'OY oy(co) dc -00< Y00

(F-40b) py(y) = f cos((y)-j sin(oy)] y(o) d-o -0 <y <0O

(F-40c) p _1 - - cos(coy) Oy(o) dco - j sin(ay) OY(co) do -- _< y _
27c 27r fs(()ycId0

(F-40d) pY(y) = 2-cos(coy)O41wo)do= 1 Jcos(oy)PY(o)do -5y<yw

-- 9 0
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(F-40e) py(y)= J (a 2 +a2 )N dw -00<y<c0

0

In Equation (F-40c), the integrand of the integral in the
imaginary part is an odd function of co, which integrates to zero

over the real line. This implies that the PDF is real-valued, in

accordance with theory. The integrand of the integral in the real
part is an even function of 03, which implies that the integral of

the real part can be evaluated as twice the integral over the

positive real line, as indicated in Equation (F-40d). The last

expression, Equation (F-40e) is evaluated by referring to equation

no. 3.737.1 of (Gradshteyn and Ryzhik, 1980), which results in

(F-41) py(y)= 2N-1aN (2N2k)I(2a)k lylk e-alyl -00 <y<

with parameter a>0 as in Equation (F-39c). Since y is the sum of

N identically-distributed, zero-mean, Laplace random variables,
then herein y is said to be SL-distributed, and py(y) is the PDF

associated with the SL distribution. For large N the SL

distribution approximates the Gaussian distribution, as expected

based on the Central Limit Theorem. In particular, the

approximation is very good for N > 30, as verified by Michels

(1996) via software-based analyses.

F.5 ACS Estimator Laos

The SL distribution describes the probabilistic behaviour of

unscaled real and imaginary components of complex-valued random
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variables for four distinct cases of interest in radar systems and

other applications. Specifically,

(A) ACS lags m•O for the time-average class (circular;

biased; unbiased) of ACS estimators for a scalar white

noise sequence;
(B) ACS lags m •0 for ensemble-averaged ACS estimators of a

scalar white noise process;

(C) off-diagonal elements in the covariance matrix for the

time-average class of estimators for a vector white

noise sequence; and

(D) off-diagonal elements in the covariance matrix for

ensemble-averaged estimators of a vector white noise

process.

Each case (and sub-cases, for time-average estimators) differs

from the others on the basis of the scaling factor used.
Therefore, it is important to determine the PDF of a generic scale

transformation on random variable y. Let L denote a positive-

valued integer constant, and define a real-valued random variable r

as

(F-42) r= -- -oo r •L

The mean and variance of r are obtained simply as

(F-43) Rr = E[r] = E[y] = 0
L

(F-44a) G=E[(r- r)2] = E[r2]= 1 E[y 2]

2  1 2 N 2 2N 2  2N 4(F-44b) Gr = L2 -y G L"rv G-T•=L"••

L2 L L L
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And the PDF of r is determined via the transformation of variables

method. Specifically,

(F-45) PR(r)=py(y(r)) dr I -oor r-

From Equation (F-42),

(F-46) y(r) = y = Lr

(F-47) dy(r) = Ldr

and from Equations (F-41) and (F-46),

(F-48) = a (2N-2-k)! (2 a)kiLlk ] k IrlkIrI
2 (N- 1)! k! (N-i-k)!

Combining Equations (F-47) and (F-48) leads to the desired result,

aILI N-1 (2N-2-k)! (2 a)kILIk ke-aIlr
(F-49a) PR(r)= 2

2N-1(N 1)! Lzk= k! (N-1-k)! Ir 1

-oo r•oo

(F-49b) a2  2N 2N 2 1 1=F4b a 2 _-(y2 = _Ti• 27--f = 4-7 a>O0

I!ay a v (yz (YU

In Equation (F-49) it is important to preserve the absolute value

operator on L to emphasize that L is positive-valued. This PDF is

referred to herein as the scaled SL distribution. Values of the

parameters N and L for the cases of interest in this report are

listed on Table F-I. For the ensemble-average cases in Table F-i,
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K denotes the number of realizations averaged. Recall that in all

cases N represents the total number of independent Laplace-

distributed variables combined together, whereas L represents the

normalizing factor applied to the sum. Also, Mc represents the

number of unique lags for the circular estimator, as defined in

Equation (E-7).

N L CASE DESCRIPTION

N N Time-average, circular, scalar, real and
imaginary ACS lags 1 • m • Mc

N N Time-average, circular, scalar, real ACS lag m = N2
2 2 for N even only

Time-average, biased, scalar, real and imaginary
N-r N ACS lag m for 1:• m • N-1

N N Time-average, unbiased, scalar, real and imaginary
ACS lags 1:m 5N-1

KN KN Ensemble-average of time-averaged, circular,
scalar, real and imaginary ACS lags 1 •m!Mc

KN KN Ensemble-average of time-averaged, circular,
2 2 scalar, real ACS lag m = N2 for N even only

Ensemble-average of time-averaged, biased, scalar,K(N-m) KN real and imaginary ACS lag m for 1 5 m : N-i

KN KN Ensemble-average of time-averaged, unbiased,
scalar, real and imaginary ACS lags 1 •m•ýN-1

N N Time-average covariance matrix real and imaginary
parts of off-diagonal elements (lag m =0)

K K Ensemble-average covariance matrix real and
I K imaginary parts of off-diagonal elements (lag m =0)

Table F-1. Values of scaled SL PDF parameters N and L for cases
of interest.
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APPENDIX G. MULTIPLE HYPOTHESES TESTING FOR ECG DIAGNOSIS

Michels (1991) extended the innovations-based generalized

likelihood ratio test for binary hypotheses involving scalar,

complex-valued sequences to the multichannel signal case, with the

final test expressions as summarized in Section 5.0. The

derivation is based on the Neyman-Pearson criterion, which is the

appropriate criterion for radar detection applications (target

detection in clutter, interference, and noise) . However, ECG

diagnosis differs from radar detection in two important ways.

First, the vector of ECG traces (the channel output) is real-

valued. Second, the general ECG diagnosis formulation involves

multiple hypotheses. Thus, an alternative approach based on the

Bayes criterion is formulated herein for ECG trace discrimination.

Multiple hypotheses testing is a well-established procedure,

and is discussed in several texts. The brief discussion presented

herein is adopted from the text by Srinath and Rajasekaran (1979),

with some minor modifications and convenient notational changes.

The formulation based on the Bayes criterion is adopted, wherein

the average cost of making a decision is minimized. Consider an
(M+1)-hypotheses problem with H0 as the null hypothesis, and M

alternative hypotheses {H1, H2, ... ,HMI. Let Cij denote the cost

associated with selecting hypothesis Hi when hypothesis Hj is true,

and let P[Hi] denote the prior probability corresponding to the

occurrence of hypothesis Hi. Finally, denote the data to be tested

as a JN-element vector C, composed by the concatenation of the

real-valued residual vector sequence {E(n)In=0,1,...,N-1},

(G-l) £(=

E(N21)1
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As shown by Srinath and Rajasekaran (1979), the Bayes criterion

for hypothesis selection leads to a decision rule based on the

values of M+1 functions {f0(K), f1(),... ,fM(E)}, where each function is

of the form

M
(G-2) fi() = (Ci -Cjj) P[Hj] p(IHj) i=O, 1,..., M

j=O
j1i

In Equation (G-2), p(EIHj) represents the posterior probability

density function for hypothesis Hj. Hypothesis Hi is selected if

the corresponding function fi(-) attains the minimum value among the

M+1 functions. Implied in the formulation that led to Equation

(G-2) is the assumption that

(G-3) CU> C•

This assumption states that the cost of making an incorrect

decision is larger than the cost associated with a correct

decision, which is a reasonable posture in most applications,

including radar systems and ECG diagnosis. Notice that with the

constraint (G-3), each term in the summation of Equation (G-2) is

non-negative, and consequently, each function fi(E) is non-negative

also.

A special case of Equation (G-2) is of practical and

theoretical interest. Let

(G-4a) Cij = 1 i j

(G-4b) Cjj = 0 j = O, M

With these conditions, Equation (G-2) becomes
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M M
(G-5a) ti( ) = I_.P[Hj]I p_(EIHj) = p(W) _ P[Hj I ] i=O0, 1,...m

j=O j=O

jf i jf i

(G-5b) fi(E) = [1- P[HiIs]] p(E) i=O, 1,. M

where Bayes' rule has been invoked in the second equality of

Equation (G-5a). As before, the hypothesis that corresponds with

the minimum-valued function fi(e) is selected. This case is referred

to as the minimum probability of error criterion.

Consider now the minimum probability of error case when all

hypotheses are equally likely a priori. That is, all prior

probabilities are the same,

(G-6) P[Ho] = P[H1] =... = P[HM] = PP

For conditions (G-4) and (G-6), Equation (G-2) reduces to

M

(G-7) fi(0 = Pp p(1j = [1-p(1H) PP i= 1, M
j=o
jfi

Since Pp is a fixed constant, the minimum-valued function fi(E) is

that one for which p(9IHj) is a maximum.

Michels (1991) has derived the multivariate PDF p(gIHj) for the

Gaussian-distributed, zero-mean, complex-valued, residual vector.

The PDF for the real-valued case is obtained as a simple

modification of the complex-valued case PDF. Additionally, since

the natural logarithm is a monotonic function, it is equivalent

(and convenient) to consider the natural logarithm of the
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multivariable PDF p(dIHj). It follows from the results obtained by

Michels (1991) that the log-likelihood under the ith hypothesis is

N-1

(G-8a) L(effH1) = 1n[p(KIHj)] = n= 1n2c-1~E(jY]E~ 1Hj 1 92IH)

JN N-1

(G-8b) L(flji): = --N ln[2c] - N In[j2(Hj)j] - YET(nlHi) Q-'(Hi) & IlHj)
-- 2 n=O

The maximum-valued log-likelihood function, L(EIHi), is that one for

which the sum of the second and third terms in the right-hand-side

of Equation (G-8b) is a minimum (due to the negative sign), since

the first term on the right-hand-side is a fixed constant for all

hypotheses. In fact, for both applications considered herein the
second term, -NIRn[fiŽ(Hi)j], ends up positive-valued upon evaluation

because the determinant of the covariance matrix L2(H]) is less than

unity (and the natural logarithm of a quantity less than one is

negative-valued). The finite sum of weighted quadratic terms is

the normalized residual sequence power, where the normalization

factor is the true covariance matrix of the residual vector under

the ith hypothesis. This term is negative-valued always. In

summary, for the minimum probability of error criterion with equal

prior probabilities, the selected hypothesis is the one which

corresponds to the maximum-valued log-likelihood function.

Without loss of generality, the log-likelihood function L(EIH )

can be replaced by a simplified log-likelihood function of the

form

N-i

(G-9) f(EIHi) = N 1n[IQ(Hj)I]+ jET(nIHj) n-(Hi) (nIOHi)
n=O
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The decision rule must be modified accordingly since the

simplification includes a sign change. Specifically, the selected

hypothesis is the one which corresponds to the minimum-valued log-
likelihood function [(_iHj). Figure G-1 is a block diagram for the

multiple hypotheses test based on the minimum probability of error

criterion with equal prior probabilities; that is, the decision

rule using the log-likelihood function in Equation (G-9).

For complex-valued residual vector sequences, the

corresponding result involves two modifications to Equation (G-
8b). First, the constant term becomes -JNln[7r]. Second, the

transpose operator is replaced by the Hermitian operator.

N In[IW(Ho)I]

WEIGHTED • + +(lo

{_•(n 1H0)}.---- QUADRATIC
FORM 0

N In[IK2(Hj1)l

{ )} QUAWEIGHTED +RA .QC[(_IH 1 ) COMPARATOR{_&n11t1-40 QUADRATIC W- (SELECT •Dcson/

FORM1Decision, D(fFORM 1 ,MINIMUM

VALUE)

• . N In[IQ(HM)1]

.• WEIGHTED +_ + (IM

{a(n IHM)) QUADRATIC
FORM M

Figure G-1. Multiple hypotheses test block diagram (minimum
probability of error criterion with equal prior probabilities).
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